Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 323=17.19 và 20n+16n-3n-1
(20n-10)+(16n-3n) chia hết ho 19 (1)
( vì 20n-1 chia hết cho 20-1=19) và 16n-3n chia hết cho 19 vì n chẵn
Vậy 20n+16n-3n-1 = ( 20n-3n)+(16n-1) chia hết cho 17 (2)
Từ (1) và (2) và ƯCLN(17, 19)=1 suy ra :
(20n+16n-3n-1) chia hết cho 323
Ta thấy :
323=17.19 và (17;19)=1 nên ta cần chứng minh
\(20^n-1+16^n-3^n⋮17\) và \(19\)
Giải:
Đặt \(A=20^n+16^n-3^n-1\)
Ta có: \(323=17.19\). Biến đổi:
\(A=20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
Mà \(n\) là số tự nhiên chẵn
\(\Rightarrow\left\{{}\begin{matrix}20^n-1⋮20-1=19\\16^n-3^n⋮16+3=19\end{matrix}\right.\)\(\Leftrightarrow A⋮19\left(1\right)\)
Mặt khác:
\(A=20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
Mà \(n\) là số tự nhiên chẵn
\(\Rightarrow\left\{{}\begin{matrix}20^n-3^n⋮20-3=17\\16^n-1⋮16+1=17\end{matrix}\right.\)\(\Leftrightarrow A⋮17\left(2\right)\)
\(\left(17;19\right)=1\) và từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow A⋮323\)
Vậy \(20^n+16^n-3^n-1⋮323\) (Đpcm)