Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để Giá trị của x có nghĩa thì:
\(\sqrt{x^2-5x+6}>0\) => \(x^2-5x+6>0\)
Phân tích Mẫu Thức ta có:
\(\sqrt{x^2-5x+6}=\sqrt{x^2-2x-3x+6}=\sqrt{\left(x^2-2x\right)-\left(3x-6\right)}\)
\(=\sqrt[]{x\left(x-2\right)-3\left(x-2\right)}=\sqrt{\left(x-2\right)\left(x-3\right)}\)
Để mẫu thức khác 0 thì :
\(\left(x-2\right)\ne0\) hoặc \(\left(x-3\right)\ne0\)
\(\Leftrightarrow\) \(x\ne2\)hoặc \(x\ne3\)(1)
Để mẫu thức ko âm ( lớn hơn 0 )
*Trường hợp 1: \(x-2>0\)hoặc \(x-3>0\)
=> \(x>2\)hoặc \(x>3\)(2)
*Trường hợp 2: \(x-2< 0\)hoặc \(x-3< 0\)
=> \(x< 2\)hoặc \(x< 3\)(3)
Từ (1),(2) và (3) ta có:
=> \(x>3\) hoặc \(x< 2\)
Chúc bạn học tốt :#
ĐK: \(x^2-5x+6>0\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)>0\)
TH1: \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>3\end{cases}}\)\(\Leftrightarrow\)\(x>3\)
TH2: \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 2\\x< 3\end{cases}}\)\(\Leftrightarrow\)\(x< 2\)
Vậy \(\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)
mình sẽ xóa câu này mong bạn gửi lại câu hỏi khác để rõ ràng cho các bạn khác tham khảo nha
a) \(\sqrt{\frac{1}{3-2x}}\)có nghĩa <=> \(\frac{1}{3-2x}>0\Leftrightarrow3-2x>0\Leftrightarrow x>\frac{3}{2}\)
b) \(\sqrt{\frac{x+2}{x^2+1}}\)có nghĩa <=> \(\frac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)
c) \(\sqrt{\frac{x+5}{x-7}}\)có nghĩa <=> \(\frac{x+5}{x-7}\ge0\Leftrightarrow\orbr{\begin{cases}x>7\\x\le-5\end{cases}}\)