Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)
Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)
Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)
Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:
\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)
Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)
Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)
b) Để A= B
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)
\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)
Vậy x>3 thì A=B
a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)
ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)
a)\(\sqrt{\frac{x-2}{x+3}}\)có nghĩa khi \(\frac{x-2}{x+3}\)\(\ge0\)
TH1: \(x-2\ge0\)và \(x+3\ge0\) TH2:\(x-2\le0\) và \(x+3\le0\)
\(\Leftrightarrow x\ge2\) \(\Leftrightarrow x\ge-3\) \(\Leftrightarrow x\le2\) \(\Leftrightarrow x\le-3\)
\(\Rightarrow x\ge2\) \(\Rightarrow x\le-3\)
Vậy vs \(x\ge2\)và\(x\le-3\)thì \(\sqrt{\frac{x-2}{x+3}}\)có nghĩa
b)Để \(\frac{4-x}{x^2-25}+\sqrt{-x-7}\)có nghĩa thì:
\(\Rightarrow\hept{\begin{cases}x^2\\-x-7\ge0\end{cases}-25\ne0}\) \(\Rightarrow\hept{\begin{cases}x\ne5\\x\le-7\end{cases}}\)
Vậy vs \(x\le-7\) và \(x\ne5\)thì \(\frac{4-x}{x^2-25}+\sqrt{-x-7}\)có nghĩa