Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 4/2n là số nguyên thi 4\(⋮\) 2n
=>2n\(\in\) Ư (4)
2n=1
n=1/2 loại
2n=2
n=2/2=1 chọn
2n=4
n=4/2=2 chọn
a) n-2\(\ne\) 0 \(\Rightarrow\)n\(\ne\) 2
b) A = \(\frac{2n+1}{n-2}\)với n = 1
A = \(\frac{2.1+1}{1-2}\)
A = \(\frac{3}{-1}\)
A = \(\frac{2n+1}{n-2}\)với n = -1
A = \(\frac{2.\left(-1\right)+1}{-1-2}\)
A = \(\frac{-1}{-3}\)= \(\frac{1}{3}\)
Câu c mk chịu .
\(a)\) Để \(A\) là phân số thì \(2n-4\ne0\)
\(\Leftrightarrow\)\(n\ne2\)
Vậy với \(n\ne2\) thì biểu thức A là phân số .
\(b)\) Ta có : \(\left(2n+2\right)⋮\left(2n-4\right)\) thì A là số nguyên :
\(\Leftrightarrow\)\(2n+2=2n-4+6\) chia hết cho \(2n-4\)\(\Rightarrow\)\(6⋮\left(2n-4\right)\)\(\Rightarrow\)\(\left(2n-4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n-4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(2,5\) | \(1,5\) | \(3\) | \(1\) | \(3,5\) | \(0,5\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)
Ta có: { eq \f(2n+1,2n-1)}= { eq \f(2n-1+2,2n-1)}= { eq \f(2n-1,2n-1)}+ { eq \f(2,2n-1)}= 1+ { eq \f(2,2n-1)
=> Để 2n+1 chia hết cho 2n-1 thì 2n-1 thuộc Ư(2) mà A là số nguyên âm nên 2n-1 thuộc Ư(2)={-1;-2}
+) Nếu 2n-1= -1 => 2n=-1+1=0
n=0:2=0
+) Nếu 2n-1= -2 => 2n=-2+1=-1
n=-1:2=-0,5
Vậy n thuộc {0;-0,5}
Giải câu b trước nha.
b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n
Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên
=> n = {-1;1}
Vậy n=1 hoặc n=-1 thì A là số nguyên.
a) Để A là phân số thì n khác 1 và -1 ( theo câu b )
Ta có :
\(\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=1+\frac{2}{2n-1}\)
Mà 2/2n-1 có tử chia hết cho 2 và mẫu thì ko
Nên 2/2n-1 ko thuộc Z
Nên 2n+1/2n-1 ko phải 1 số nguyên và ko phải 1 số chẵn