K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Mặc dù không chắc nhưng vẫn làm:P Mà lần sau viết kỹ đề hơn nha, ở đâu ra c22 vậy?

Nhắc lại BĐT tam giác với x, y, z là độ dài 3 cạnh tam giác: \(\left|x-y\right|< z< x+y\)

Theo đề bài a, b, c > 0(*)

BĐT \(\Leftrightarrow\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\le0\)

\(\Leftrightarrow\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2+2bc-a^2\right)\le0\)

\(\Leftrightarrow\left(b^2+c^2-a^2-2bc\right)\left[\left(b+c\right)^2-a^2\right]\le0\) (1)

Theo BĐT tam giác \(b+c>a\Rightarrow\left(b+c\right)^2>a^2\Leftrightarrow\left(b+c\right)^2-a^2>0\) 

Kết hợp (1) do đó ta chỉ cần chứng minh \(b^2+c^2-2bc-a^2< 0\Leftrightarrow\left(b-c\right)^2< a^2\)

\(\Leftrightarrow\left|b-c\right|< a\). Và BĐT này cũng hiển nhiên đúng theo BĐT tam giác.

25 tháng 12 2015

Sai đề kìa 

a  chứ ko phải c

1 tháng 1 2018

câu a làm theo hằng đẳng thức 

câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}

theo bất đẳng thức trong tam giác thì hiệu 2 cạnh  luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0 

mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0 

k cho mk cái nha

a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)

\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)

\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)

\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)

\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)

b, Như bạn Trần Thị Nhung

25 tháng 9 2019

Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath

Tham khảo câu b

25 tháng 9 2019

thank^v^

28 tháng 11 2016

Ta có:

a < b + c
=> a + a <a + b + c
=> 2a < 2
--> a < 1

Tương tự ta có : b < 1,c < 1

Suy ra: (1 − a)(1 − b)(1 − c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < − 1 + ab + bc + ca
⇔ 2abc < − 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < a^2 + b^2 + c^2 – 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < (a + b + c)^2 − 2
⇔ a^2 + b^2 + c^2 + 2abc < 2^2−2 = 2
⇔ dpcm

28 tháng 11 2016

ukm!khó bn nhỉ?đúng là 1 bài toán hay vs đáng cân nhắc ,tham khảo thêm.....mọi người nhớ kb với mik nha!!!yêu nhìu>_<

11 tháng 8 2015

Xét hiệu: (a+ b2 - c2)- 4a2.b2 = (a+ b2 - c2 - 2ab). (a+ b2 - c2 + 2ab) = [(a-b)2 - c2 ]. [(a+b)- c2]

= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c) = A

Vì a; b;c là 3 cạnh của tam giá => a+ b > c ; a+ b + c > 0;  a < b + c ; a > b - c

=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0

=> A < 0 

=> (a+ b2 - c2)<  4a2.b2 

bài làm

Xét hiệu:

(a+ b2 - c2)- 4a2.b2 = (a+ b2 - c2 - 2ab). (a+ b2 - c2 + 2ab)

= [(a-b)2 - c]. [(a+b)- c2]

= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c)

= A

Vì a; b;c là 3 cạnh của tam giá

=> a+ b > c ; a+ b + c > 0;  a < b + c ; a > b - c

=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0

=> A < 0 

=> (a+ b2 - c2)<  4a2.b2 

=>ĐpCm

Hok tốt

 

27 tháng 9 2017

ta có : 4b^2c^2=(2bc)^2 ; a,b,c >0

<=> (2bc-b^2-c^2+a^2)(2bc+b^2+c^2-a^2)

,=. (-(b-c)^2+a^2)((b+c)^2-a^2)

= (a-b+c)(a+b-c)(b+c-a)(b+c+a)

27 tháng 9 2017

ms nãy mik đã chứng minh rồi chịu khó lướt tí

8 tháng 4 2017

oh my dog toán lớp 8 đây á

mik làm đc hình như mỗi câu a thôi thì phải

8 tháng 4 2017

có câu a là lớp 8 có khả năng chứng minh mà hơi khó