Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Số đối của a-b là -(a-b)=-a+b=b-a
b: (a-b)(b-a)=-(a-b)2<0
Lời giải:
$|a-b|< c$
$\Rightarrow -c<a-b< c$
$\Rightarrow b-c< a< b+c$ (đpcm)
ab - ac + bc - c 2 = -1
(ab - ac) + (bc - c 2 ) = -1
a(b - c) + c(b - c) = -1
(a + c)(b - c) = -1
Mà -1 = -1 . 1 nên a + c và b - c là 2 số đối nhau . Ta có :
a + c = -(b - c)
a + c = -b + c
a = - b(cùng bớt 2 vế đi c (đpcm)
Theo đề ta có:
a(b+c) - b(a+c) = b(a-c) - a(b-c)
a.b + a.c - b.a - b.c = b.a - b.c - a.b + a.c
Rút gọn a.b và b.a ở vế 1; b.a và a.b ở vế 2 còn:
a.c - b.c = - b.c + a.c
a.c - b.c = a.c - b.c
=> a(b+c) - b(a+c) = b(a-c) - a(b-c)
Vế trái = ab +ac - ab - bc = ac - bc (1)
Vế phải = ab - bc - ab +ac= ac-bc (2)
Từ (1) và (2) suy ra VT=VP
Ta có: (a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)
= a+b-c-a+b-c+b+c-a-b+a+c
= (a-a-a+a)+(b+b+b-b)+(c+c-c-c)
= 0+2b+0
= 2b
Vậy (a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)=2b
\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(b-a-c\right)\)
\(=a+b-c-a+b-c+b+c-a-b+a+c\)
\(=2b\)