Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba ⋮ 9
ab - ba=a * 10+b*1-b*10-a*1
=a*(10-1)-b*(10-1)=a*9-b*9=9*(a-b)⋮9(vì 9⋮9)
vậy ab-ba⋮9
abba ⋮ 11
abba=a*1000+b*100+b*10+a.1=a*(1000+1)+b*(100+10)
=a*1001+b*110=a*11*91+b*10*11=11(a*91+b*10)⋮11(vì 11⋮11)
Vậy abba⋮11
ab - ba ⋮ 9
ab - ba=a x 10+b x 1-b x 10-a x 1
=a x (10-1)-b x (10-1)=a x 9-b x 9=9x (a-b)⋮9(vì 9⋮9)vậy ab-ba⋮9abba ⋮11
abba=a x 1000+b x 100+b x 10+a.1= a x (1000+1)+b x (100+10)
=a x 1001+b x 110=a x 11 x 91+b x 10 x 11=11(a x 91+b x 10)⋮11(vì 11⋮11)Vậy abba⋮11
a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)
Mà \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy \(\overline{abcdeg}⋮11\)
b, Ta có: 72=8.9
\(\Rightarrow10^{28}+8⋮8;9\)
Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó
\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.
\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9
\(\Rightarrow10^{28}+8⋮9\) (1)
Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)là 0, 0, 8 và tổng của 3 chữ số đó là 8.
Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)
Từ (1) và (2) suy ra \(10^{28}+8⋮72\)
a)\(ab+cd+eg⋮11\Rightarrow ab+999999\cdot ab+cd\cdot9999\cdot cd+eg+9999\cdot eg⋮11\)
\(\Rightarrow abcdeg⋮11\left(đpcm\right)\)
b) 10 chia 9 dư 1 nên 1028 chia 9 dư 1 => 1028 + 8 chia hết cho 9
1028 có tận cùng là 28 chữ số 0, chia hết cho 8 => 1028 + 8 chia hết cho 8
mà (8; 9) = 1 => 1028 + 8 chia hết cho 72 (đpcm)
bạn nga nguyễn ơi, mik vẫn ko hiểu cách giải của bạn, hình như có gì đó sai sai hay sao ý
abcd=100.ab+cd =99ab+(ab+cd)
vì 99 chia hết cho 11=> 99ab chia hết cho 11 => nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
225=3\(^2\). 5\(^2\)
\(\Rightarrow\)225\(⋮\)9 và 25
Vì 4a7b \(⋮\)25\(\Rightarrow\)7b\(⋮\)25\(\Rightarrow\)b=5
Để 4a27 \(⋮\)9\(\Rightarrow\)4+a+2+7\(⋮\)9\(\Rightarrow\)13+a\(⋮\)9\(\Rightarrow\)a=5