Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuyệt lắm bn ới ời
👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👏👏👏👏👏👏👏👏👏👏👏👏
a) 10232 + 2
= 1000....0 + 2
(232 số 0)
= 1000...02
(231 số 0)
=> tổng các chữ số của 10232 + 2 là: 1 + 0 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3
231 số 0
=> 10232 + 2 chia hết cho 3
b) 1078 + 8
= 1000...0 + 8
78 số 0
= 1000...08
77 số 0
=> tổng các chữ số của 1078 + 8 là: 1 + 0 + 0 + 0 + ... + 0 + 8 = 9 chia hết cho 9
77 số 0
=> 1078 + 8 chia hết cho 9
Ủng hộ mk nha ^_-
a) Ta co 10232 = 102 * (102)115
Ta co 102 đồng dư với 20 = 3*6+2 nên 102 đồng dư với 2
102 đồng dư với 20 = 3*6+2 nên 102 đồng dư với 2 do đó (102)115 đồng dư với 2
vay 102 * (102)115 hay 10232 đồng dư với 2*2=4 đồng dư với 1 suy ra 10232 + 2 chia hết cho 3
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*)
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương
Ta chứng minh: Nếu ƯCLN(a,6)=1 thì a^2 +5 chia hết cho 6
Từ ƯCLN(a,6)=1=> a không chia hết cho 2, a không chia hết cho 3
do a không chia hết cho 2=>(a-1)chia hết cho 2=>a^2+5=a^2-1+6=(a-1)(a+1)+6 chia hết cho 2 (1)
do a không chai hết cho 3 => (a-1)(a+1)+6 chai hết cho 3 (2)
Do ƯCLN(2;3)=1nên kết hợp với (1) và (2) được (a-1)(a+1)+6 chia hết cho (2.3)hay a^2+5 chai hết cho 6
Ngược lại: Từ a^2+5 chia hết cho 6 => ƯCLN(a;6)=1
Ta có a^2+5 chia hết cho 6 => (a-1)(a+1)+6 chia hết cho 6 <=>(a-1)(a+1) chia hết cho 6=>(a-1)(a+1) chia hết cho cả 2 và 3
Với (a-1)(a+1) chia hết 2 =>a lẻ ->ƯCLN(a,3)=1 (3)
Với (a-1)(a+1) chia hết cho 3 mà a-1,a,a+1 là ba số tự nhiên liên tiếp nên có một số chia hết cho 3=>a không chia hết cho 3=>ƯCLN(a,3)=1 (4)
Từ (3) và (4)+>ƯCLN (a,6)=1
Suy ra bài toán đã được chứng minh
nguyen anh a