K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

\(-6x^3+x^2+5x-2=-6x^3+4x^2-3x^2+2x+3x-2\)

                                          \(=-2x^2\left(3x-2\right)-x\left(3x-2\right)+3x-2\)

                                          \(=\left(3x-2\right)\left(-2x^2-x+1\right)\)

21 tháng 8 2017

\(-6x^3+x^2+5x-2\)

\(=\left(-6x^3-6x^2\right)+\left(7x^2+7x\right)+\left(-2x-2\right)\)

\(=-6x^2\left(x+1\right)+7x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(-6x^2+7x-2\right)\left(x+1\right)\)

\(=\left(-6x^2+4x+3x-2\right)\left(x+1\right)\)

\(=\left[-2x\left(3x-2\right)+\left(3x-2\right)\right]\left(x+1\right)\)

\(=\left(-2x+1\right)\left(3x-2\right)\left(x+1\right)\)

8 tháng 6 2017

a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)

b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)

f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)

8 tháng 6 2017

a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=x^2+2xy+y^2-x^2+y^2\)

\(=2y^2+2xy\)

\(=2y\left(x+y\right)\)

c) \(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-x^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)

\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)

\(=\left(4x^2-1\right)\left(y^2-1\right)\)

30 tháng 10 2019

a) Ta có: \(A=x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x^2-6x+9\right)+2\)

\(=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTNN của đa thức \(A=x^2-6x+11\) là 2 khi x=3

b) Ta có: \(B=x^2-4x+3\)

\(=x^2-4x+4-1\)

\(=\left(x^2-4x+4\right)-1\)

\(=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: GTNN của đa thức \(B=x^2-4x+3\) là -1 khi x=2

c) Ta có: \(C=x^2+5x\)

\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{25}{4}\)

\(=\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\)

Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\ge\frac{-25}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)

Vậy: GTNN của đa thức \(C=x^2+5x\)\(\frac{-25}{4}\) khi \(x=\frac{-5}{2}\)

d) Ta có: \(D=x^2+x+1\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy: GTNN của đa thức \(D=x^2+x+1\)\(\frac{3}{4}\) khi \(x=\frac{-1}{2}\)

e) Ta có: \(E=4x^2+4x-2\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1-3\)

\(=\left[\left(2x\right)^2+2\cdot2x\cdot1+1\right]-3\)

\(=\left(2x+1\right)^2-3\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\forall x\)

Dấu '='xảy ra khi

\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

Vậy: GTNN của đa thức \(E=4x^2+4x-2\) là -3 khi \(x=\frac{-1}{2}\)

g) Ta có: \(G=x^2-7x\)

\(=x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{14}-\frac{49}{14}\)

\(=\left(x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{4}\right)-\frac{49}{4}\)

\(=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\)

Ta có: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\ge\frac{-49}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{7}{2}\right)^2=0\Leftrightarrow x-\frac{7}{2}=0\Leftrightarrow x=\frac{7}{2}\)

Vậy: GTNN của đa thức \(G=x^2-7x\)\(\frac{-49}{4}\) khi \(x=\frac{7}{2}\)

30 tháng 10 2019

\(A=x^2-6x+11\)

\(A=x^2-2.x.3+3^2-3^2+11\)

\(A=\left(x^2-6x+3^2\right)-3^2+11\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\forall x\)

=>\(\left(x-3\right)^2\ge0\ge2\forall x\)

Min A = 2 khi \(\left(x-3\right)^2=0\)

=> \(x-3=0hayx=3\)

Vậy Min A = 2 khi x = 3

\(B=x^2-4x+3\)

\(B=x^2-2.x.2+2^2-2^2+3\)

\(B=\left(x^2-4x+2^2\right)-4+3\)

\(B=\left(x-2\right)^2-1\)

=> \(\left(x-2\right)^2-1\ge0\forall x\)

MIn B = -1 khi \(\left(x-2\right)^2=0\)

=>\(\left(x-2\right)=0hayx=2\)

Vậy Min B = -1 khi x= 2

29 tháng 1 2020

a) \(6x^2-x-1\)

\(=6x^2-3x+2x-1\)

\(=3x\left(2x-1\right)+\left(2x-1\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\)

29 tháng 1 2020

b) \(6x^2-6x-3\)

\(=3\left(2x^2-2x-1\right)\)

19 tháng 10 2020

a) Đặt t = x2

bthuc <=> t2 - 7t + 16 

Từ đây ta không thể phân tích được :)

b) x3 - 2x2 + 5x - 4 

= x3 - x2 - x2 + x + 4x - 4

= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )

= ( x - 1 )( x2 - x + 4 )

c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )

d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )

e) 6x3 + x2 + x + 1

= 6x3 + 3x2 - 2x2 - x + 2x + 1

= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 3x2 - x + 1 )

f) 4x3 + 6x2 + 4x + 1

= 4x3 + 2x2 + 4x2 + 2x + 2x + 1

= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 2x2 + 2x + 1 )

19 tháng 10 2020

:) Quỳnh đặt ĐK đi nè :3 \(x^2=t\left(t\ge0\right)\)

22 tháng 6 2017

\(1,\)

\(a,25+10a^2+a^4\)

\(=5^2+2.5.a^2+\left(a^2\right)^2\)
\(=\left(5+a^2\right)^2\)

\(b,\left(x^2+4x+4\right)-25y^2\)

\(=\left(x^2+2x.2+2^2\right)-\left(5y\right)^2\)

\(=\left(x+2\right)^2-\left(5y\right)^2\)

\(=\left(x+2-5y\right)\left(x+2+5y\right)\)

\(c,4b^2-\left(a^2-6a+9\right)\)

\(=\left(2b\right)^2-\left(a^2-2a.3+3^2\right)\)

\(=\left(2b\right)^2-\left(a-3\right)^2\)

\(=\left(2b-a+3\right)\left(2b+a-3\right)\)

Chúc bn học giỏi nhoa!!!

22 tháng 6 2017

Dễ mà : 

Ta có : 25 + 10a2 + a4

= 52 + 2.a2.5 + (a2)2

= (5 + a2)2

(áp dụng a2 + 2ab + b2 = (a + b)2 ) 

27 tháng 10 2016

Ta có:   x^3 + 6x^2 - 13x - 42 = 0

             x^3 - 3x^2 + 9x^2 - 27x + 14x - 42=0

             (x^3 - 3x^2)+ (9x^2 - 27x) + (14x - 42)=0

             x^2(x-3) + 9x(x-3) + 14(x-3) = 0

              (x-3)(x^2 + 9x + 14) =0

=> x-3=0

     x=3            (do đa thức x^2 + 9x + 14 không có nghiệm nên ta không lấy)

28 tháng 10 2016

vc ban x2+9x+14 co nghiem ma

9 tháng 9 2019

1. -6x .(x2-5x+4)-(x+1)2

=-6x3+30x2-24x-x2-2x-1

-6x3+29x2-26x-1

2. (X+3)2-4x(x-7)

=x2+6x+9-4x2+28x

=-3x2+34x+9

3.(5x-2)2-(3x-2). (X+1)

=25x2- 20x+4-3x2-3x+2x+2

=22x2-21x+6

9 tháng 9 2019

Đề bài là j vậy

29 tháng 7 2015

 

x+ x+ 6x+ 5x + 5

=x4+x3+x2+5x2+5x+5

=x2.(x2+x+1)+5.(x2+x+1)

=(x2+x+1)(x2+5)

 

31 tháng 7 2015

=x^4 +x^3 + x^2 + 5x^2 + 5x + 5

=x^2(x^2+x+1) +5(x^2+x+1)

=(x^2+x+1)(x^2+5)