Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{1}{5}-x=1\frac{3}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{8}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{23}{10}\)
\(x=\frac{23}{10}-\frac{16}{5}\)
\(x=-\frac{9}{10}\)
3/x-5 = -4/x+2
=> 3(x+2) = -4(x-5)
=> 3x + 6 = -4x + 20
=> 3x + 4x = 20 - 6
=> 7x - 14
=> x = 2
Bài trên dễ tự làm
\(\frac{3}{x-5}=\frac{-4}{x+2}\)
\(\Rightarrow3\cdot(x+2)=-4\cdot(x-5)\)
\(\Rightarrow3x+6=-4x-20\)
\(\Rightarrow-4x-3x=6-20\)
\(\Rightarrow-7x=-14\Rightarrow x=2\)
\(2\frac{2}{5}+\frac{3}{5}x=\frac{3}{4}\)
\(\Rightarrow\frac{12}{5}+\frac{3}{5}x=\frac{3}{4}\)
Tự làm nốt
Mình bận một số công việc cho mk xin lỗi
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{48}{98}\)
\(A=\frac{8}{49}\)
A = \(\frac{1}{3}\).{ \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)}
A = \(\frac{1}{3}\).{\(\frac{1}{2}-\frac{1}{98}\)}
A = \(\frac{1}{3}.\left\{\frac{49}{98}-\frac{1}{98}\right\}\)
A=\(\frac{1}{3}.\frac{24}{49}\)
A = \(\frac{49}{98}\)
Mk trả lời câu c nhưng bạn k mk nhé
B= { A,B,C}
Tập hợp B là con của tập hợp A
Đặt \(x=\frac{y}{2}=\frac{z}{3}=k\left(k\in Q\right)\)\(\Rightarrow x=k;y=2k;z=3k\)
Thế (1) vào biểu thức trên
\(\Rightarrow2\left(x^2+y^2\right)-z^2=9\)
\(\Leftrightarrow2\left[\left(k\right)^2+\left(2k\right)^2\right]-\left(3k\right)^2=9\)
\(\Rightarrow2\left(k^2+4k^2\right)-9k^2=9\)
\(\Rightarrow2k^2+8k^2-9k^2=9\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)
Với k = 3
\(\Rightarrow x=3;y=3.2=6;z=3.3=9\)
Với k = -3
\(\Rightarrow x=-3;y=-3.2=-6;z=-3.3=-9\)
\(\left[9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
có 9 số 1 có 9 số hạng
\(=\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=1\)