Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(199^3-199=199\left(199^2-1\right)\)\(=199\left(199+1\right)\left(199-1\right)=199.200.198\)
SỐ BÉ NHẤT TRONG 3 SỐ LÀ 198
KICH MK NHA BẠN
- vì (x-2015)2 và (y-2014)2 đều là các số chính phương nên luôn luôn lớn hơn 0 (không phụ thuộc vào x;y) hoặc bằng 0
nếu (x-2015)2 + (y-2014)2 = 0
thì (x-2015)2 và (y-2014)2 đều bằng 0
=> x=2015 và y=2014
=> tổng x+y=4029 - xem lại đề nhé
- (x-1)x3(x+1)=0
=> phương trình có 3 nghiệm là -1;0;1 (xét từng trường hợp nếu x3=0; x+1=0 và x-1=0)
199^3-199
=199(199^2-1)
=199(199+1)(199-1)
=198.199.200
Số lớn nhất trong ba số tự nhiên liên tiếp đó là số 200
**** nhe
a, n-2;n;n+2 ( n là số tự nhiên lẻ >= 3 )
b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20
<=> 4n = 20 <=> n=5
vậy 3 số đó là 3,5,7
(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1
Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)
Gọi 3 số đó lần lượt là a ; a + 1 ; a + 2
Theo đề ra ta có :
\(\left(a+2\right)^2-a\left(a+1\right)=79\)
\(\Rightarrow a^2+4a+4-a^2-a=79\)
\(\Rightarrow3a+4=79\)
\(\Rightarrow3a=75\)
\(\Rightarrow a=25\)
Vậy số cần tìm là 25
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2