Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB=(-1;6)
=>VTPT là (6;1)
Phương trình tham số là;
x=1-t và y=-2+6t
b: PTTQ là:
6(x-1)+1(y+2)=0
=>6x-6+y+2=0
=>6x+y-4=0
5:
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3
=>a=-4 và b=11
=>y=-4x+11
4:
vecto BC=(1;-1)
=>AH có VTPT là (1;-1)
Phương trình AH là:
1(x-1)+(-1)(y+3)=0
=>x-1-y-3=0
=>x-y-4=0
Đường thẳng d có 1 vtcp là (1;-3) nên nhận (3;1) là 1 vtpt
Phương trình d:
\(3\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow3x+y+3=0\)
\(\Delta\left\{{}\begin{matrix}quaA\left(-2;1\right)\\VTPT\overrightarrow{n}=\left(2;3\right)\end{matrix}\right.\)
\(PTTQ\) của \(\Delta\) là : \(a\left(x-x_0\right)+b\left(y-y_0\right)=0\)
\(\Leftrightarrow2\left(x+2\right)+3\left(y-1\right)=0\)
\(\Leftrightarrow2x+4+3y-3=0\)
\(\Leftrightarrow2x+3y+1=0\)
A 3 ; − 1 ∈ A B u → A B = A B → = − 2 ; 6 → n → A B = 3 ; 1 → A B : 3 x − 3 + 1 y + 1 = 0 ⇔ A B : 3 x + y − 8 = 0.
Đáp án D
a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)
b) Ta có \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1; - 4} \right)\).
Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).
c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là
\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)
Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)