K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

\(3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^2}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^2}=3^{10}\cdot\frac{1}{3^7}=3^3\)

15 tháng 7 2018

\(81^3\cdot\frac{1}{9^2}:3^3\)

\(=\left(9^2\right)^3\cdot\frac{1}{9^2}:3^3\)

\(=9^6\cdot\frac{1}{9^2}:3^3\)

\(=9^4:3^3\)

\(=3^8:3^3=3^5\)

15 tháng 7 2018

=(3^4)3/(3^2)2:3^3

=3^12/3^4:3^3

=3^5

15 tháng 7 2018

\(a,81^3\cdot\frac{1}{9^2}:3^3=\left(9^2\right)^3\cdot\frac{1}{9^2}:3^3=9^6\cdot\frac{1}{9^2}\cdot\frac{1}{3^3}=\frac{9^6}{9^2}\cdot\frac{1}{3^3}=9^4\cdot\frac{1}{3^3}=\left(3^2\right)^4\cdot\frac{1}{3^3}=\frac{3^8}{3^3}=3^5\)

\(b,625^4:25^2=\left(5^4\right)^4:\left(5^2\right)^2=5^{16}:5^4=5^{12}\)

4 tháng 7 2017

\(3^2\times\frac{1}{243}\times81^2\times\frac{1}{3^3}\)

\(=3^2\times\frac{1}{3^5}\times\left(3^4\right)^2\times\frac{1}{3^3}\)

\(=\left(3^2\times3^8\right)\times\left(\frac{1}{3^5}\times\frac{1}{3^3}\right)\)

\(=3^{10}\times\frac{1}{3^8}\)

\(=3^2\)

\(=9\)

\(\left(4\times2^5\right)\div\left(2^3\times\frac{1}{6}\right)\)

\(=\left(2^2\times2^5\right)\div\left(2^3\times\frac{1}{2\times3}\right)\)

\(=2^7\div2^2\times3\)

\(=2^5\times3\)

\(=96\)

19 tháng 4 2020

\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)

\(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^3}\)

\(=\left(3^2.3^8\right).\left(\frac{1}{3^5}.\frac{1}{3^3}\right)\)

\(=3^{10}.3^{-8}\)

\(=3^2=9\)

\(\left(4.2^5\right):\left(2^3.\frac{1}{6}\right)\)

\(=2^7:2^2.3\)

\(=2^5.3\)

\(=96\)

23 tháng 6 2015

a)\(25.5^3.\frac{1}{625}.5^2=5^2.5^3\cdot\frac{1}{5^4}\cdot5^2=5^7\cdot\frac{1}{5^4}=5^3=125\)

b)\(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\left(\frac{1}{2}\right)=2^7.2=2^8=256\)

13 tháng 7 2017

\(7^2.49^3.7^7=7^2.\left(7^2\right)^3.7^7=7^2.7^6.7^7=7^{15}\)

\(3^5.9^4.27^2.81=3^5.\left(3^2\right)^4.\left(3^3\right)^2.3^4=3^5.3^8.3^6.3^4=3^{23}\)

13 tháng 7 2017

a) \(7^2.49^3.7^7=7^2.7^6.7^7=7^{15}\)

b) \(3^5.9^4.27^2.81=3^5.3^8.3^6.3^4=3^{23}\)

4 tháng 8 2018

a,427-98

=(427+2)-(98+2)

=429-100

=329

4 tháng 8 2018

\(a)\) \(427-98=329\)

\(b)\) \(2\cdot19\cdot15+3\cdot43\cdot10+62\cdot80\)

\(=\left(2\cdot15\right)\cdot19+\left(3\cdot10\right)\cdot43+62\cdot80\)

\(=30\cdot19+30\cdot43+62\cdot80\)

\(=30\cdot\left(19+43\right)+62\cdot80\)

\(=30\cdot62+62\cdot80\)

\(=62\cdot\left(30+80\right)\)

\(=62\cdot110=6820\)

\(c)\)  Đặt \(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)

\(\Rightarrow2M=1-\frac{1}{3^6}\)

\(\Rightarrow M=\frac{728}{2\cdot729}=\frac{364}{729}\)

Vậy \(M=\frac{364}{729}\)

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您