Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3+4x^2-29x+24\)
\(=x^3-x^2+5x^2-5x-24x+24\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+5x-24\right)\)
\(=\left(x-1\right)\left[x\left(x-3\right)+8\left(x-3\right)\right]\)
\(=\left(x-1\right)\left(x-3\right)\left(x+8\right)\)
\(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
Chúc bạn học tốt.
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
ta co: \(F\left(x\right)=x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x^2-2x-3x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
a, \(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2+6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2-1+3x\right)^2\)
b, \(x^4-7x^3+14x^2-7x+1\)
\(=x^4+2x^2+1+7x^3+12x^2-7x\)
\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)
\(=\left(x^2-1+3x\right)^2\)
c, \(12x^2-11x-36\)
\(=12x^2-27x+16x-36\)
\(=3x\left(4x-9\right)+4\left(4x-9\right)\)
\(=\left(4x-9\right)\left(3x+4\right)\)
1) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
2) \(A=n^3\left(n^2-7\right)^2-36n\)
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)
\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)
\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)
\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)
\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)
\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)
\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)
\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)
Rồi sao nữa còn nghĩ :))
x^3 + 6x^2 + 11x + 6
= x^3 + x^2 + 5x^2 + 5x + 6x + 6
= x^2(x + 1) + 5x(x + 1) + 6(x + 1)
= (x + 1)(x^2 + 5x + 6)
= (x + 1)(x^2 + 2x + 3x + 6)
= (x + 1)[x(x + 2) + 3(x + 2)
= (x + 1)(x + 2)(x + 3)
BÀI 1:
Tìm số tự nhiên n sao cho \(19+3^n\)là số chính phương
BÀI 2:
cho a,b,c là các số thực thỏa mãn: \(1\le a\), \(b,c\le3\)và \(a+b+c=6\)
Tìm GTLN: \(M=a^2+b^2+c^2\)
(Lớp 8 mà học đa thức bất khả quy rồi sao???)
Em tìm hiểu sơ về 2 khái niệm sau đây trên mạng: "đa thức bất khả quy" và "tiêu chuẩn Eisenstein".
1. Đa thức hệ số nguyên gọi là bất khả quy nếu không phân tích được thành 2 nhân tử bậc nhỏ hơn với hệ số nguyên (bậc của chúng >=1).
2. Tiêu chuẩn Eisenstein: Nếu tồn tại \(p\) nguyên tố thoả mãn:
- Hệ số cao nhất không chia hết cho \(p\).
- Mọi hệ số khác đều chia hết cho \(p\).
- Riêng hệ số tự do không chia hết cho \(p^2\).
Thì đa thức này bất khả quy.
-----
Nếu em đã hiểu được 2 khái niệm trên thì lời giải như sau:
Xét số nguyên tố \(3\). Nhận thấy theo tiêu chuẩn Eisenstein thì đa thức \(Q\left(x\right)\) bất khả quy. Xong!
x3+6x2+11x+6=x3+6x2+9x+2x+6
=x.(x2+6x+9)+2.(x+3)
=x.(x2+3x+3x+9)+2.(x+3)
=x.[x.(x+3)+3.(x+3)]+2.(x+3)
=x.(x+3)(x+3)+2.(x+3)
=(x+3)[x.(x+3)+2]
=(x+3)(x2+3x+2)
=(x+3)(x2+x+2x+2)
=(x+3)[x.(x+1)+2.(x+1)]
=(x+1)(x+2)(x+3)
x3 + 6x2 + 11x + 6 = (x3 + x2) + (5x2 + 5x) + (6x + 6) = x2(x + 1) + 5x(x + 1) + 6(x+1) = (x+1)(x2 + 5x + 6) = (x+1)(x2 + 2x + 3x + 6) = (x+1)[x(x+2) + 3(x+2)] = (x+1)(x+2)(x+3)