Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{1}{9}x^4-2x^2y+9y^2=\left(\dfrac{1}{3}x^2\right)^2-\left(2.\dfrac{1}{3}x^2.3y\right)^2+\left(3y\right)^2\)
\(=\left(\dfrac{1}{3}x^2-3y\right)^2\)
b, \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)
a \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b \(4y^2+y+\frac{1}{16}=\left(2y\right)^2+2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2=\left(2y+\frac{1}{4}\right)^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
d) \(x^2-2x+4=x^2-2.x.4+4^2\)
\(=\left(x-4\right)^2\)
e) \(25x^2+4y^2-20xy=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
^...^ ^_^ Bài làm có gì ko hiểu bạn cứ hỏi nhé ^_^
mạng của mk bị lỗi bạn xem cái phần cuối cùng nhé xl bạn nhiều vì mạng của mk bị lỗi
a, \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b, \(4y^2+y+\dfrac{1}{16}=\left(2y\right)^2+2.\dfrac{1}{4}.2y+\left(\dfrac{1}{4}\right)^2=\left(2y+\dfrac{1}{4}\right)^2\)
a)\(x^2\)-6x+9=\(\left(x-3\right)^2\)
b)\(4y^2+y+\dfrac{1}{16}=\left(2y+\dfrac{1}{4}\right)\)
a) \(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
b) \(4x^2+9+12x\)
\(=\left(2x\right)^2+3^2+2.2x.3\)
\(=\left(2x+3\right)^2\)
c) \(\frac{1}{4}+3x+9x^2\)
\(=\left(\frac{1}{2}\right)^2+2.\frac{1}{2}.3x+\left(3x\right)^2\)
\(=\left(\frac{1}{2}+3x\right)^2\)
d) \(-6xy+x^2+9y^2\)
\(=x^2-6xy+9y^2\)
\(=x^2-2.x.3y+\left(3y\right)^2\)
\(=\left(x-3y\right)^2\)
a. x2 + 6x + 9 = (x + 3)2
b. 25 + 10x + x2 = (5 + x)2
c. x2 + 8x + 16 = (x + 4)2
d. x2 + 14x + 49 = (x + 7)2
e. 4x2 + 12x + 9 = (2x + 3)2
f. 9x2 + 12x + 4 = (3x + 2)2
h. 16x2 + 8 + 1 = (4x + 1)2
i. 4x2 + 12xy + 9y2 = (2x + 3y)2
k. 25x2 + 20xy + 4y2 = (5x + 2y)2
a) \(=\left(x+3\right)^2\)
b) \(=\left(x+5\right)^2\)
c) \(=\left(x+4\right)^2\)
d) \(=\left(x+7\right)^2\)
e) \(=\left(2x+3\right)^2\)
f) \(=\left(3x+2\right)^2\)
h) \(=\left(4x+1\right)^2\)
i) \(=\left(2x+3y\right)^2\)
k) \(=\left(5x+2y\right)^2\)
a) x2 + 2x + 1 = x2 + 2.x.1+ 12 = ( x + 1)2
b) 9x2 + y2 + 6xy = (3x)2 + 2.3.x.y + y2 = (3x + y)2
c) 25a2 + 4b2 – 20ab = (5a)2 – 2.5.a.2b. + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a. + (5a)2 = (2b – 5a)2
d) x2 – x + \(\dfrac{1}{4}\) = x2 – 2.x. \(\dfrac{1}{2}\) + ( \(\dfrac{1}{2}\))22 = ( x - \(\dfrac{1}{2}\) )2
Hoặc x2 – x + \(\dfrac{1}{4}\) = \(\dfrac{1}{4}\) - x + x2 = (\(\dfrac{1}{2}\))2 – 2. \(\dfrac{1}{2}\).x + x2 = (\(\dfrac{1}{2}\) - x)2
a) x2 + 2x + 1 = x2+ 2 . x . 1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2 . 3 . x . y + y2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2 . 5a . 2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2 . 2b . 5a + (5a)2 = (2b – 5a)2
d) x2 – x + 1414 = x2 – 2 . x . 1212 + (12)2(12)2= (x−12)2(x−12)2
Hoặc x2 – x + 1414 = 1414 - x + x2 = (12)2(12)2 - 2 . 1212 . x + x2 = (12−x)2
a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2
Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2
b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12
= [(2x + 3y) + 1]2
= (2x + 3y + 1)2
Đề bài tương tự. Chẳng hạn:
1 + 2(x + 2y) + (x + 2y)2
4x2 – 12x + 9…
a) \(\frac{1}{9}x^4-2x^2y+9y^2=\left(\frac{1}{3}\right)^2\left(x^2\right)^2-2x^2y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\frac{1}{3}x^23y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
\(\frac{1}{9}x^4-2x^2y+9y^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\times\frac{1}{3}x^2\times3y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
\(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2\times5x\times2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)