Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, (a-1)(a+1)(a^2+1)`
`= (a^2-1)(a^2+1)`
`= a^4-1`
`b, (xy+1)^2 - (xy-1)^2`
`= x^2y^2 + 2xy + 1 - x^2y^2 + 2xy - 1`
`= 4xy`
a) \(\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=\left(a^2-1\right)\left(a^2+1\right)\)
\(=a^4-1\)
b) \(\left(xy+1\right)^2-\left(xy-1\right)^2\)
\(=\left[\left(xy+1\right)-\left(xy-1\right)\right]\left[\left(xy+1\right)+\left(xy-1\right)\right]\)
\(=\left(xy+1-xy+1\right)\left(xy+1+xy-1\right)\)
\(=4xy\)
1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)
\(=25\left(a-b\right)^2=25\cdot100=2500\)
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
Bài 1:
a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$
$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$
b.
$(x+1)(x+2)(x+3)(x+4)-24$
$=[(x+1)(x+4)][(x+2)(x+3)]-24$
$=(x^2+5x+4)(x^2+5x+6)-24$
$=a(a+2)-24$ (đặt $x^2+5x+4=a$)
$=a^2+2a-24=(a^2-4a)+(6a-24)$
$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$
$=x(x+5)(x^2+5x+10)$
Bài 2:
a. ĐKXĐ: $x\neq 3; 4$
\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)
b. $x^2+20=9x$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Rightarrow x=5$ (do $x\neq 4$)
Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$
Bài 1.
a) 2x - x2
= x(2 - x)
b) 16x2 - y2
= (4x + y)(4x - y)
c) xy + y2 - x - y
= (xy + y2) - (x + y)
= y(x + y) - (x + y)
= (y - 1)(x + y)
d) x2 - x - 12
= x2 + 3x - 4x - 12
= (x2 + 3x) - (4x + 12)
= x(x + 3) - 4(x + 3)
= (x - 4)(x + 3)
Bài 2.
(2x + 3y)(2x - 3y) - (2x - 1)2 + (3y - 1)2
= (2x + 3y)(2x - 3y) + [(3y - 1)2 - (2x - 1)2]
= (2x + 3y)(2x - 3y) + (3y - 1 + 2x - 1)(3y - 1 - 2x + 1)
= (2x + 3y)(2x - 3y) + (3y + 2x - 2)(3y - 2x)
= (2x + 3y)(2x - 3y) - (2x + 3y - 2)(2x - 3y)
= (2x - 3y)(2x + 3y - 2x - 3y + 2)
= 2.(2x + 3y)
Thay x = 1; y = -1 và biểu thức đại số, ta có:
2[2.1 + 3.(-1)]
= 2(2 - 3)
= 2.(-1) = -2
Bài 3
a) 9x2 - 3x = 0
3x(3x - 1) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}3x=0\\3x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\3x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) x2 - 25 - (x + 5) = 0
(x2 - 25) - (x + 5) = 0
(x - 5)(x + 5) - (x + 5) = 0
(x - 5 - 1)(x + 5) = 0
(x - 6)(x + 5) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)
c) x2 + 4x + 3 = 0
x2 + x + 3x + 3 = 0
(x2 + x) + (3x + 3) = 0
x(x + 1) + 3(x + 1) = 0
(x + 3)(x + 1) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
d) (3x - 1)(2x - 7) - (x + 1)(6x - 5) = 16
6x2 - 21x - 2x + 7 - 6x2 + 5x - 6x + 5 - 16 = 0
-24x - 4 = 0
\(\Rightarrow\)-24x = 4
\(\Rightarrow\) x = \(\dfrac{-1}{6}\)
Bài 1:Phân tích đa thức thành nhân tử
a,2x−x2
=x(2-x)
b,
16x2−y2
=(4x-y)(4x+y)
c,xy+y2−x−y
=(xy+y2)-(x+y)
=y(x+y)-(x+y)
=(x+y)(y-1)
d,
x2−x−12
=x2-4x+3x-12
=(x2-4x)+(3x-12)
=x(x-4)+3(x-4)
=(x-4)(x+3)
`a, x^3 + 4x = x(x^2+4)`
`b, 6ab - 9ab^2 = 3ab(2-b)`
`c, 2a(x-1) + 3b(1-x)`
`= (2a-3b)(x-1)`
`d, (x-y)^2 - x(y-x)`
`= (x-y+x)(x-y)`
`= (2x-y)(x-y)`
1) \(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
`a, (2x-3)^3 = 8x^3 - 36x^2 + 54x - 27`
`b, (a+3b)^3 = a^3 + 9a^2b + 27ab^2 + 27b^3`
`c, (xy-1)^3 = x^3y^3 - 3x^2y^2 + 3xy -1`