Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)
Tia AB cắt DC tại E.
=> AC là tia phân giác của \(\widehat{DAE}\left(gt\right)\)
\(\Rightarrow AC\perp DE\left(gt\right)\)
=> Tam giác ADE cân.
Lại có: \(\widehat{D}=60^o\Rightarrow\Delta ADE\) là tam giác đều.
=> C là trung điểm DE (AC đồng thời la trung tuyến)
Mà: BC//AD => BC là đường trung bình của \(\Delta ADE\)
Ta có: \(AB=DC=\frac{AD}{2},BC=\frac{AD}{2}\)
Giả thiết: \(AB+BC+CD+AD=20\)
\(\Rightarrow\frac{AD}{2}+\frac{AD}{2}+\frac{AD}{2}+AD=20\)
\(\Rightarrow\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)