Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Leftrightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Leftrightarrow12x-4y=3x+3y\)
\(\Leftrightarrow12x-4y-3x-3y=0\)
\(\Leftrightarrow9x-7y=0\)
\(\Leftrightarrow9x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{9}\)
a.
Giả thiêt : nếu 1 dường thẳng cắt hai dường thẳng sao cho co 1 cặp góc sole trong bằng nhau
Kết luận: thì 2 đường thẳng song song
b.
GT:nếu 1 đường thẳng cắt hai đường thẳng song song
KL: thì các góc sole trong bằng nhau
ko cần ****
A B a b c 1 2 1
GT c cắt a tại A c cắt b tại B A2 + B1 = 180 o KL a // b
CM:
\(\widehat{B2}+\widehat{A1}=180^0\) (1)
\(\widehat{B1}+\widehat{B2}=180^0\) ( 2 góc kề bù ) (2)
Từ (1) và (2)
\(\Rightarrow\widehat{B2}+\widehat{A1}=\widehat{B1}+\widehat{B2}\)
\(\Rightarrow\widehat{A1}=\widehat{B1}\) mà 2 góc này ở vị trí đồng vị
\(\Rightarrow a//b\)
a)
Giả thiết: Một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau.
Kết luận: Hai đường thẳng đó song song.
b) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong bằng nhau.
a) Giả thiết: Một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau.
Kết luận: Hai đường thẳng đó song song.
b) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong bằng nhau.
Chứng minh định lí
A1 + B1 = 1800
Mà A1 + A2 = 1800 ( 2 góc kề bù )
\(\Rightarrow\)B1 = A2
Mà B1 và A2 là 2 góc đồng vị
\(\Rightarrow\)a // b
GT:Nếu hai đg thẳng a,b cất đg thảng c.............bù nhau
KL:Thì a và b song song với nhau
gt | hai đường thẳng a, b cắt đường thẳng c và trong các góc tạo thành có một cặp góc trong cùng phía bù nhau |
kl | a // b |
Cm: theo gt ta có : góc A1 + góc B1 = 180 độ
lại có góc A1 + góc A2 = 180 độ( hai góc kề bù)
=> góc A1 = góc B2
mà hai góc này ở vị trí hai góc đồng vị
=> a // b a b c A B 1 2 1
mình sửa câu trả lời vừa nãy một chút.
phần cm:
=> góc B1 = góc A2