K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

a.

Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên  \(x^2-y^2\) chia 4 dư 0;1;3 mà  \(1998\) chia 4 dư 2 nên PT vô nghiệm.

b.

Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm

15 tháng 6 2019

#)Giải :

VD1:

a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1

nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2

=> Phương trình không có nghiệm nguyên

b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3 

=> Phương trình không có nghiệm nguyên

15 tháng 6 2019

Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.

Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.

Mà 1999 chia 8 dư 7 

Suy ra phương trình không có nghiệm nguyên

30 tháng 3 2021

\(x^2-y^2=2010\)

Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1 

x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 ) 

mà 2010 chia 4 dư 2  (2) 

từ (1) ; (2) Vậy  phương trình vô nghiệm 

15 tháng 6 2019

#)Giải :

VD1:

Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :

\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )

\(\Rightarrow-1\le x\le0\)

Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)

Vậy...........................

15 tháng 6 2019

#)Giải :

VD2:

\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)

\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)

\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)

Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)

Do đó \(y^4=\left(x^2+y^2+1\right)^2\)

Thay vào phương trình, ta suy ra được \(x=z=0\)

\(\Rightarrow y=\pm1\)

8 tháng 11 2017

\(pt\Leftrightarrow x^3+2000x-1=y^2\Leftrightarrow x^3-x+2001x-1=y^2\Leftrightarrow\left(x-1\right)x\left(x+1\right)+2001x-1=y^2\)

Vì \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮3\\2001x⋮3\end{cases}\Rightarrow}\)(x-1)x(x+1)+2001x-1 chia 3 dư 2 mà y2 chia 3 chỉ dư 0 hoặc 1 nên PT vô nghiệm

Vậy PT không có nghiệm nguyên

19 tháng 4 2020

b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)

không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:

\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)

\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)

\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)

ĐCĐK và kết luận

Vậy (1;1;13);(13;1;1);(1;13;1)

15 tháng 6 2019

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

15 tháng 6 2019

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3

12 tháng 3 2021

a/ \(9x^2+y^2=18x+6y-18\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

12 tháng 3 2021

a) \(9x^2+y^2=18x+6y-18\)

\(\Rightarrow9x^2+y^2-18x-6y+9=0\)

\(\Rightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)

Mà \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Vậy ....................

Câu b để mik nghĩ  tiếp

15 tháng 6 2019

\(x^2+y^2-x-y=8\)

\(\Rightarrow4x^2+4y^2-4x-4y=32\)

\(\Rightarrow\left(4x^2-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Rightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34=5^2+3^2=3^2+5^2\)

\(TH1:\hept{\begin{cases}\left(2x-1\right)^2=3^2\\\left(2y-1\right)^2=5^2\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(h\right)\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)

\(TH2:\hept{\begin{cases}\left(2x-1\right)^2=5^2\\\left(2y-1\right)^2=3^2\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

Vậy.......

15 tháng 6 2019

Mọi người check thử ạ! Cách lớp 9 :v. Cách này phức tạp lắm, em vẫn thích cách bạn zZz Cool Kid zZz hơn, cách này làm để cho nó hack não cho vui:) 

Viết lại thành phương trình bậc 2 đối với x:\(x^2-x+\left(y^2-y-8\right)=0\) (1)

Để phương trình có nghiệm thì \(\Delta=\left(-1\right)^2-4\left(y^2-y-8\right)\ge0\)

\(\Leftrightarrow-4y^2+4y+33\ge0\Leftrightarrow\frac{1-\sqrt{34}}{2}\le y\le\frac{1+\sqrt{34}}{2}\)

Do y nguyên nên \(-2\le y\le3\). Thay vào (1) và giải phương trình bậc hai đối với x.