Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(502+482+...+22) - (492+472+...+12)
= (502-492) + (482-472) + ... + (22-12)
= (50+49)(50-49) + (48+47)(48-47) + ... + (2+1)(2-1)
= 50+49+48+47+...+1
= \(\frac{\left(50+1\right).50}{2}=\frac{51.50}{2}=1275\)
=\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot...\cdot\frac{2009^2-1}{2009^2}=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{2009\cdot2010}{2009\cdot2009}\)
Áp dụng HĐT ( a^2 - b^2)
\(=\frac{1.2.3.4.3.5.4.6....2009.2010}{2.2.3.3.4.4....2009.2009}=\frac{1.2010}{2.2009}=\frac{1005}{2009}\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{2009^2-1}{2009^2}=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3\cdot5}{4.4}\cdot\cdot\cdot\cdot\frac{2008.2010}{2009}=\frac{1}{2}\cdot\frac{2010}{2009}=\frac{1005}{2009}\)
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
Bài 1:
Ta có:
\(P=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(P=\left[\left(a+1\right)\left(a+4\right)\right]\cdot\left[\left(a+2\right)\left(a+3\right)\right]+1\)
\(P=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
Đặt \(x=a^2+5a+5\) , khi đó:
\(P=\left(a-1\right)\left(a+1\right)+1\)
\(P=a^2-1+1\)
\(P=a^2=\left(x^2-5x+5\right)^2\)
Mà \(a\inℤ\Rightarrow x^2-5x+5\inℤ\)
=> P là số chính phương
\(\left(xy+yz+zx\right)^2+\left(x^2-yz\right)^2+\left(y^2-zx\right)^2+\left(z^2-xy\right)^2=x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)+x^4-2x^2yz+y^2z^2+y^4-2y^2zx+z^2x^2+z^4-2z^2xy+x^2y^2=x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(x^2+y^2+z^2\right)^2=100^2=10000\)
Đặt \(a=x^2-3x+5;b=x^2-3x-1\Rightarrow a-b=6.\)
Đặt biểu thức đã cho là A
\(\Rightarrow A=a^2-2ab+b^2=\left(a-b\right)^2=6^2=36\)
=> Biểu thức A không phụ thuộc vào biến x (đpcm)
(x2-3x+5)2-2(x2-3x+5)(x2-3x-1)+(x2-3x-1)2=(x2-3x-5-x2+3x+1)2=(-4)2=42
=> Không phụ thuộc vào x
Chúc bạn học tốt !
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
há há.. bài này mà lớp 8 hã?
\(50^2+48^2+...+4^2+2^2-49^2-47^2-...-1^2\)
\(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...\left(2+1\right)\left(2-1\right)\)
\(=99+95+...+3\)
\(=\frac{\left(99+3\right)\left(99-3\right):4+1}{2}\)
\(=1275\)
ta bo ngoac roi tinh
kllllet qua cuoi cung a1275