Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}\)
\(x=\frac{23}{11}\)
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Em tham khảo nhé!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009}{4018}-\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)
=> \(1\cdot2009=1\left(x+1\right)\)
=> \(x+1=2009\Rightarrow x=2009-1=2008\)
Vậy x = 2008
Chúc bn hk tốt !
TÌM X
a,\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
b, \(\left(x-\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
Bài làm
a) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\) b) \(\left(x-\frac{1}{2}\right)^2=\frac{4}{25}\)
=> \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\) => \(\left(x-\frac{1}{2}\right)^2=\left(\frac{2}{5}\right)^2\)
=> \(x-\frac{1}{2}=\frac{1}{3}\) => \(x-\frac{1}{2}=\frac{2}{5}\)
\(x=\frac{1}{3}+\frac{1}{2}\) \(x=\frac{2}{5}+\frac{1}{2}\)
\(x=\frac{2}{6}+\frac{3}{6}\) \(x=\frac{4}{10}+\frac{5}{10}\)
\(x=\frac{5}{6}\) \(x=\frac{9}{10}\)
Vậy \(x=\frac{5}{6}\) Vậy \(x=\frac{9}{10}\)
# Chúc bạn học tốt #
Tìm x
\(a,2x-25\%=\frac{1}{2}\)
\(b,\left(\frac{3x}{7}+1\right).\left(-0,25\right)=\frac{-1}{28}\)
\(\)
\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Ta có : \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1000.1001}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1001-1000}{1000.1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}=\frac{1000}{1001}\)
Ta thấy : \(1001< 2020\Rightarrow\frac{1}{1001}>\frac{1}{2020}\)
\(\Rightarrow-\frac{1}{1001}< -\frac{1}{2020}\)
\(\Rightarrow1-\frac{1}{1001}< 1-\frac{1}{2020}\Rightarrow\frac{1000}{1001}< \frac{2019}{2020}\)
Hay : \(N< M\)
a) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{4}{5}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{5}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{4}{10}-\frac{5}{10}=\frac{-1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{4}{10}-\frac{5}{10}=\frac{1}{-10}\)
\(\Leftrightarrow x+1=-10\)
\(\Leftrightarrow x=-10-1\)
\(\Leftrightarrow x=-11\)
Hông chắc !!! <3
b) Đề khó hiểu vậy, nếu đề là : \(x+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)thì làm như sau nha
\(x+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
\(\Leftrightarrow x+\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=1\)
\(\Leftrightarrow x+1=1\)
\(\Leftrightarrow x=1-1\)
\(\Leftrightarrow x=0\)
Rất vui vì giúp đc bạn <3
Cô mk giao thế, bó tay.com. Ko bỏ trị tuyệt đối đi vô lý như thế chứ
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{x}+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{2009}{2010}\)
\(1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)
\(\Leftrightarrow\) x + 1= 2010
< = > x = 2010 - 1 = 2009