Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co (a+b+c)2=a2+b2+c2+2ab-2bc-2ac
=a2+b2+[c2+2(ab-bc-ac)]
=a2+b2
x3 - ( a + b + c )x2 + ( ab + bc + ca )x = abc
<=> x3 - ax2 - bx2 - cx2 + abx + bcx + cax - abc = 0
<=> x3 - ax2 - bx2 + abx - cx2 + bcx + cax - abc = 0
<=> x ( x2 - ax - bx + ab ) - c ( x2 - bx - ax + ab ) = 0
<=> ( x - c ) ( x2 - ax - bx + ab ) = 0
<=> ( x - c ) [ x ( x - b ) - a ( x - b ) ] = 0
<=> ( x - c ) ( x - a ) ( x - b ) = 0
<=>\(\hept{\begin{cases}x-c=0\\x-a=0\\x-b=0\end{cases}}\) <=> a = b = c = x
ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn
a/x +b/y +c/z =0 ->ayz+bxz+cxz=0
x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1
x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1
x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM
k hộ mik nha
#)Giải :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)
#~Will~be~Pens~#
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
Vậy M=1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Khi đó VT trở thành:
\(a^3-b^3-a^3-b^3=-2b^3\)
TL:
\(\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-b^3-a^3-b^3\)
\(=-2b^3\)
=> đpcm
a + b +c = 9
( a+b+c )^2 = 9^2
a^2 + b^2 +c^2 + 2ab+ 2bc +2ac = 81
53 + 2(ab+bc+ac) = 81
2(ab+bc+ac) = 81 - 53
2(ab +bc +ac) = 28
ab + bc +ac = 14
a2 + b2 + c2 = 53
Ta có
(a+b+c)2=a2+b2+c2 + 2ab+2ac+2bc = 92 (1)
thay a2 + b2 + c2 = 53 vào (1)
=> 53 +2ab+2ac+2bc = 92
=>2ab+2ac+2bc = 92 - 53
=> 2ab+2ac+2bc = 28
=> 2.(ab+bc+ca)=28
=> ab+bc+ca = 28:2 = 14