K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

a + b +c = 9

( a+b+c )^2 = 9^2

a^2 + b^2 +c^2 + 2ab+ 2bc +2ac = 81

53 + 2(ab+bc+ac) = 81

         2(ab+bc+ac)  = 81 - 53

         2(ab +bc +ac) = 28

            ab + bc +ac  = 14

28 tháng 6 2015

a2 + b2 + c2 = 53 
Ta có

(a+b+c)2=a2+b2+c2 + 2ab+2ac+2bc = 92 (1) 
thay a2 + b2 + c2 = 53 vào (1)

=> 53 +2ab+2ac+2bc = 92 

=>2ab+2ac+2bc = 92 - 53 
=> 2ab+2ac+2bc = 28 
=> 2.(ab+bc+ca)=28

=> ab+bc+ca = 28:2 = 14 

13 tháng 8 2015

ta co (a+b+c)2=a2+b2+c2+2ab-2bc-2ac

                     =a2+b2+[c2+2(ab-bc-ac)]

                     =a2+b2

4 tháng 4 2021

x3 - ( a + b + c )x2 + ( ab + bc + ca )x = abc

<=> x3 - ax2 - bx2 - cx2 + abx + bcx + cax - abc = 0

<=> x3 - ax2 - bx2 + abx - cx2 + bcx + cax - abc = 0

<=> x ( x2 - ax - bx + ab ) - c ( x2 - bx - ax + ab ) = 0

<=> ( x - c ) ( x2 - ax - bx + ab ) = 0

<=> ( x - c ) [ x ( x - b ) - a ( x - b ) ] = 0

<=> ( x - c ) ( x - a ) ( x - b ) = 0

<=>\(\hept{\begin{cases}x-c=0\\x-a=0\\x-b=0\end{cases}}\) <=> a = b = c = x 

4 tháng 4 2021
Cảm ơn nha

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha

a/x +b/y +c/z =0 ->ayz+bxz+cxz=0

x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1

x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1

x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM

k hộ mik nha

28 tháng 5 2019

#)Giải :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)

            #~Will~be~Pens~#

Bài 1 : Cho a + b = 1 Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 Tính giá trị biểu thức A = x2018 + y 2019 Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H ....
Đọc tiếp

Bài 1 : Cho a + b = 1 

Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)

Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 

Tính giá trị biểu thức A = x2018 + y 2019 

Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020

Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H . Đường thẳng kẻ qua D song song với AB cắt BC,AC lần ,lượt tại M,N.

a ) Tứ giác ABMD là hình gì ? Vì sao ?

b ) Chứng minh M là trực tâm tam giác ACD .

c )Gọi I là trung điiểm MC . Chứng minh :  góc HNI = 90 độ 

Bài 5 : Cho biểu thức : 

\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\left(ĐKXĐ:x\ne0,x\ne-5\right)\)

a ) Rút gọn biểu thức trên 

b ) Tìm giá trị của x để giá trị của biểu thức =1

0
26 tháng 12 2020

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

Vậy M=1

26 tháng 12 2020

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

5 tháng 11 2018

rút gọn hả bn

5 tháng 11 2018

Rút gọn: \(A=\left(a^2+a-1\right)\left(a^2-a+1\right)\)

\(=a^2a^2-a^2a+a^2+aa^2-aa+a-a^2+a-1\)

\(=a^4-a^3+a^2+a^3-a^2+a-a^2+a-1\)

\(=a^4-a^2+2a-1\)

Vậy \(A=a^4-a^2+2a-1\)

8 tháng 7 2019

\(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Khi đó VT trở thành:

\(a^3-b^3-a^3-b^3=-2b^3\)

8 tháng 7 2019

TL:

\(\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)

 \(=a^3-b^3-a^3-b^3\) 

\(=-2b^3\) 

=> đpcm