Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A B C E 50
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
A B C D E
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
x A B C m 1
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC
a) Xét tam giác ADE có
Có AD=AE
=>Tam giác ADE cân tại A
Vì tam giác ADE và tam giác ABC đều cân tại A
=>B=C=D=E
Mà 2 góc B và D ở vị trí đồng vị nên DE//BC
b) Có DB=AB-AD
EC=AC-AE
Mà AB=AC
AD=AE
=>DB=EC
Xét tam giác MBD và tam giác MEC
Có BM=CM(gt)
B=C(tam giác ABC cân tại A)
DB=EC(cmt)
=>Tam giác MBD=Tam giác MEC
c)Vì tam giác MBD=tam giác MEC
=> DM=EM(2 cạnh đông vị)
Xét tam giác ADM và tam giác AEM
Có AD=AE(gt)
AM cạnh chung
DM=EM(cmt)
=>Tam giác ADM= Tam giácEDM
mk k vẽ hình nữa nha bn!!!
Bài 1:
a/ Xét ΔABC và ΔACE có:
\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)
AC: Cạnh chung
\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> \(\widehat{ABC}=\widehat{ACB}\) = 50o
=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)
Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)
= 80o + 50o = 130o
Bài 1:
a/ Xét ΔABC và ΔACE có:
BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)
AC: Cạnh chung
BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> ABCˆ=ACBˆABC^=ACB^ = 50o
=> BACˆ=180o−Bˆ−Cˆ=180o−50o−50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)
Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)
= 80o + 50o = 130o