Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
ta có : \(2^{33}\equiv8\)(mod31)
\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)
\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)
\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)
=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)
vậy số dư pháp chia trên là 2
1a) Đặt : \(\frac{x}{3}=\frac{y}{12}=\frac{z}{5}=k\) => \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\) (*)
Khi đó, ta có: xyz = 22,5
=> 3k . 12k.5k = 22,5
=> 180k3 = 22,5
=> k3 = 22,5 : 180
=> k3 = 0,125
=> k3 = (0,5)3
=> k = 0,5
Thay k = 0,5 vào (*), ta được :
+) x = 3. 0,5 = 1,5
+ y = 12. 0,5 = 6
+) z = 5. 0,5 = 2,5
Vậy ...
b) Ta có: \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{49}=4\\\frac{z^2}{25}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.49=196\\z^2=4.25=100\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm14\\z=\pm10\end{cases}}\)
Vậy ...
1.
a) Có x/3 = y/12 = z/5
=> (x/3)3 = x/3 . y/12 . z/5 = xyz / 3.12.5 = 22,5 / 180 ( vì xyz=22,5)
=> x3/27 = 0,125
=> x3 = 0,125 . 27
=> x = 1,5
Có x/3 = z/5
=> 1,5 /3 = z/5 (vì x=1,5)
=> z= 1,5 /3 .5 = 2,5
Có xyz= 22,5
=> 1,5 . 2,5 . y = 22,5
=> y= 22,5 / (1,5 . 2,5) = 6
Vậy x=1,5 ; y=6 ; z=2,5
Bài 6 :
Số hàng dọc nhiều nhất là : 6 hàng
Lớp 6a có 9 hàng ngang.
Lớp 6b có 7 hàng ngang.
Lớp 6c có 8 hàng ngang.
Bài 7 :
Số 315
Bài 8 :
ƯCLN(n+3,2n+5) = 1
Bài 9 :
ƯCLN(3n+1,5n+4) = 1
Bài 10 :
1) a = 228 , b = 28
a = 112 , b = 56
1. \(AB=-\frac{1}{3}x^2y^2\cdot\left(-6x^3y^4\right)=\left(-\frac{1}{3}\cdot-6\right)\left(x^2x^3\right)\left(y^2y^4\right)=2x^5y^6\)
Bậc = 5 + 6 = 11
2. Thiếu B