K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Biến cố đối của biến cố “Xuất hiện ba mặt sấp” là biến cố: “Xuất hiện ba mặt ngửa”

b) Biến cố đối của biến cố “Xuất hiện ít nhất một mặt sấp” là biến cố “Không xuất hiện mặt sấp nào”

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả có thể xảy ra của phép thử là \(n\left( \Omega  \right) = {2^4}\)

a) Biến cố đối của biến cố “Xuất hiện ít nhất ba mặt sấp” là biến cố “ Xuất hiện nhiều nhất một mặt sấp”

Biến cố xảy ra khi trên mặt đồng xu chỉ xuất hiện một hoặc không có mặt sấp nào. Số kết quả thuận lợi cho biến cố là \(C_4^1 + 1 = 5\)

Xác suất của biến cố là \(P = \frac{5}{{{2^4}}} = \frac{5}{{16}}\)

b) Biến cố đối của biến cố “Xuất hiện ít nhất một mặt ngửa” là biến cố “ Không xuất hiện mặt ngửa nào”

Biến cố xảy ra khi tất cả các mặt đồng là mặt sấp. Chỉ có 1 kết quả thuận lợi cho biến cố

Xác suất của biến cố là \(P = \frac{1}{{{2^4}}} = \frac{1}{{16}}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega  \right) = 4\)

+) Gọi A là biến cố “Có ít nhất một lần xuất hiện mặt sấp”

+) Các kết quả thuận lợi cho biến cố A là: \(SS;{\rm{ }}SN;{\rm{ }}NS\)tức là \(A = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS} \right\}\). Vậy \(n\left( A \right) = 3\).

+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{3}{4}\)

a: n(A)=2

n(omega)=2*2*2=8

=>P(A)=2/8=1/4

b: B={(NSS); (SNS); (SSN)}

=>n(B)=3

=>P(B)=3/8

c: C={NSS; NSN; SSN; SSS}

=>n(C)=4

=>P(C)=4/8=1/2

d: D={NSN; NNS; NNN; SNN; NSS; SNS; SSN}

=>n(D)=6

=>P(D)=6/8=3/4

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Sơ đồ cây

b) Từ sơ đồ cây ta có \(n\left( \Omega  \right) = 12\).

Ta có \(F = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\). Suy ra \(n\left( F \right) = 6\). Vậy \(P\left( F \right) = \frac{6}{{12}} = 0,5\).

\(G = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right);\left( {5,N} \right)} \right\}\). Suy ra \(n\left( G \right) = 7\). Vậy \(P\left( G \right) = \frac{7}{{12}}\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Không gian mẫu là:  \(\Omega  = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right);\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\).

b) \(C = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right)} \right\} \Rightarrow \overline C  = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\)

\(D = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right);\left( {5,S} \right)} \right\} \Rightarrow \overline D  = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {6,S} \right)} \right\}\).

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Để tính xác suất của biến cố nói trên, ta sẽ lấy số phần tử của kết quả có lợi cho biến cố chia cho số phần tử của không gian mẫu.

Cụ thể:

Không gian mẫu là tập hợp \(\Omega  = \{ SS;SN;NS;NN\} \). Do đó \(n(\Omega ) = 4\)

Các kết quả thuận lợi cho biến cố (A) đã cho là: SN; NS; NN, tức là \(n(A) = 3\)

Vậy xác suất của biến cố A là \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{3}{4}.\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = {6^3}\)

a) Gọi là biến cố “Tổng số chấm xuất hiện nhỏ hơn 5”, ta có biến cố đối của là \(\overline A \): “Tổng số chấm xuất hiện lớn hơn hoặc bằng 5”

Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = 1 + C_3^1 = 4\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{4}{{{6^3}}} = \frac{1}{{54}}\)

Vậy xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{54}} = \frac{{53}}{{54}}\)

b) Gọi là biến cố “Tích số chấm xuất hiện chia hết cho 5”, ta có biến cố đối của là \(\overline A \): “Tích số chấm xuất hiện không chia hết cho 5”

\(\overline A \) xảy ra khi không có mặt của xúc xắc nào xuất hiện 5 chấm

Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = {5^3}\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{{5^3}}}{{{6^3}}} = \frac{{125}}{{216}}\)

Vậy xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\)

8 tháng 5 2023

Câu 1: Gieo 1 đồng tiền cân đối và đồng chất 2 lần

\(\Rightarrow n\left(\Omega\right)=2^2=4\)

Gọi A là biến cố cả hai lần xuất hiện mặt sấp
\(\Rightarrow A=\left\{SS\right\}\Rightarrow n\left(A\right)=1\)

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{4}\)

Chọn B

Câu 2: Số phần tử không gian mẫu: \(n\left(\Omega\right)=6\)

Gọi biến cố A: “Số chấm là số nguyên tố xuất hiện”

\(A=\left\{2;3;5\right\}\)

\(\Rightarrow n\left(A\right)=3\)

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)

Chọn A

NV
8 tháng 5 2023

1D

2A

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Kí hiệu S là đồng xu ra mặt sấp và N là đồng xu ra mặt ngửa. Ta có sơ đồ cây

Dựa vào sơ đồ cây ta suy ra \(n\left( \Omega  \right) = 16\).

b) Gọi A là biến cố: “gieo đồng xu 4 lần có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa”

Suy ra \(A = \left\{ {SSNN;SNSN;SNNS;NSSN;NSNS;NNSS} \right\}\). Suy ra \(n\left( A \right) = 6\). Vậy\(P\left( A \right) = \frac{6}{{16}} = \frac{3}{8}\).