\(\frac{a}{b}=\frac{c}{d}\) ( a, b, c, d \(\ne0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm1\right).\)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm2\right).\)

c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}\left(đpcm3\right).\)

d) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}-1=\frac{d}{c}-1\)

\(\Rightarrow\frac{b}{a}-\frac{a}{a}=\frac{d}{c}-\frac{c}{c}\)

\(\Rightarrow\frac{b-a}{a}=\frac{d-c}{c}\left(đpcm4\right).\)

Còn 2 câu kia tí nữa mình làm sau nhé.

Chúc bạn học tốt!

27 tháng 10 2019

ths banj

17 tháng 11 2016

a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\)

\(\frac{a+b}{b}=\frac{c+d}{d}\)

Mấy bài kia cưng tương tự bạn nga!

5 tháng 9 2019

a. Ta có: a+b/b = (a+b):b = a:b + b:b = a/b +1

Ta có: c+d/d = (c+d):d = c:d + d:d = c/d +1

Ta có: a/b = c/d

1 = 1

=> a+b/b = c+d/d

Áp dụng cách tương tự cho các câu khác!

5 tháng 12 2017

a,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)\(\Rightarrowđpcm\)

b,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)\(\Rightarrowđpcm\)

27 tháng 8 2016

bài này ở trog SGK tập 1 toán 7 đúng ko bn? để mk giải giúp cho:

a) Ta có:  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

      \(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

b)  Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-c}{b-d}\)

            \(\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

 c)  Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

              \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

 d) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

             \(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)

  e)  Từ kết quả câu c), ta có : \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

   f) Từ kết quả câu d), ta có : \(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

 tick cho mk nha!!ok

2 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2) ->Đpcm

9 tháng 10 2020

Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)

Còn ý b làm tương tự nha!
4 tháng 7 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)

Thay \(\left(1\right),\left(2\right)\)vào từng đẳng thức ta được:

a) Ta có: 

\(\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)

\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)(cùng bằng \(k+1\))

b) Ta có:

\(\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\)

\(\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\)

\(\rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)(cùng bằng\(\frac{k-1}{k}\))

c) Ta có:

\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)

\(\rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)(cùng bằng\(\frac{k}{k+1}\))

d) tương tự như các ý trên ta cũng chứng minh được \(\frac{a}{a-b}=\frac{c}{c-d}\)

4 tháng 7 2016

a) Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=>\(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\)

b) Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{b}{a}=\frac{d}{c}\)

=> \(1-\frac{b}{a}=1-\frac{d}{c}\)

=> \(\frac{a-b}{a}=\frac{c-d}{c}\)

c) Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=>\(\frac{b}{a}=\frac{d}{c}\)

=>\(1+\frac{b}{a}=1+\frac{d}{c}\)

=>\(\frac{a+b}{a}=\frac{c+d}{c}\)

=>\(\frac{a}{a+b}=\frac{c}{c+d}\)

d) Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=>\(\frac{b}{a}=\frac{d}{c}\)

=>\(1-\frac{b}{a}=1-\frac{d}{c}\)

=>\(\frac{a-b}{a}=\frac{c-d}{c}\)

=>\(\frac{a}{a-b}=\frac{c}{c-d}\)

10 tháng 10 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)

\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)

Nhân vế (1) và (2) lại ta được:

\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

29 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) Ta có: 

\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)

b) Ta có:

\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)

c) Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2019

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=t(t\neq \pm 1)\) \(\Rightarrow a=bt;c=dt\)

Khi đó:

\(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b(t+1)}{b(t-1)}=\frac{t+1}{t-1}\)

\(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d(t+1)}{d(t-1)}=\frac{t+1}{t-1}\)

\(\Rightarrow \frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

12 tháng 7 2019

Cách khác:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)