Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình
=>MQ//BD và MQ=BD/2
Xét ΔCBD có
P,N lần lượt là trung điểm của CD,CB
=>PN là đường trung bình
=>PN//BD và PN=BD/2
=>MQ//PN và MQ=PN
Xét tứ giác MNPQ có
MQ//PN
MQ=PN
=>MNPQ là hình bình hành
Xét ΔCAB có
I,N lần lượt là trung điểm của CA,CB
=>IN là đường trung bình
=>IN//AB và IN=AB/2
Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA
=>KQ là đường trung bình
=>KQ//AB và KQ=AB/2
=>IN//KQ và IN=KQ
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường(1)
INKQ là hình bình hành
=>IK cắt NQ tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra MP,NQ,IK đồng quy
1) Xét tam giác ABC có:
M là trung điểm của AB( gt)
N là trung điểm của BC( gt)
=> MN là đường trung bình của tam giác ABC
=> \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
Q là trung điểm của AD( gt)
P là trung điểm của DC( gt)
=> PQ là đường trung bình của tam giác ADC
=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)
b) Xét tam giác ABD có:
M là trung điểm của AB (gt)
F là trung điểm của BD(gt)
=> MF là đường trung bình của tam giác ABD
=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)
CMTT => EP là đường trung bình của tam giác ADC
=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)
Từ (3),(4) => Tứ giác MEPF là hình bình hành
c) Ta có: MN là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)
Ta có: PQ là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)
Từ (5),(6) => Tứ giác MNPQ là hình bình hành
=> MP cắt PQ tại trung điểm của MP(t/c)
Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)
=> MP,NQ,EF đồng quy