Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://www.youtube.com/channel/UCU_DXbWfhapaSkAR7XsK5yQ?view_as=subscriber
Gọi OD cắt (O) tại E,F \(\left(E\in DF\right)\)ta có:
\(\widehat{DAE}=\widehat{DFM}\)(cùng bù với \(\widehat{MAE}\))
\(\widehat{ADE}=\widehat{FDM}\)(chung)
Do đó \(\Delta DAE\text{~}\Delta DFM\text{ }\left(g.g\right)\)
\(\Rightarrow\frac{DA}{DF}=\frac{DE}{DM}\)
\(\Rightarrow DA.DM=DE.DF\)
\(=\left(DO-OE\right)\left(DO+OF\right)=\left(DO-OM\right)\left(DO+OM\right)=DO^2-OM^2\)(đpcm)
a: Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=90^0+90^0=180^0\)
=>OMAN là tứ giác nội tiếp
=>O,M,A,N cùng thuộc một đường tròn
b: ΔOBN cân tại O
mà OI là đường phân giác
nên OI\(\perp\)BN và OI là đường trung trực của BN
Xét ΔOBI và ΔONI có
OB=ON
\(\widehat{BOI}=\widehat{NOI}\)
OI chung
Do đó: ΔOBI=ΔONI
=>\(\widehat{OBI}=\widehat{ONI}=90^0\)
=>IB là tiếp tuyến của (O)
c: Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
=>A nằm trên đường trung trực của MN(1)
OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
d: AO là đường trung trực của MN
=>AO cắt MN tại trung điểm của MN
=>K là trung điểm của MN