Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
a) Theo bài ra, ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)
Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)
\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)
\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)
Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)
Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)
\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)
\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)
\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)
\(\Rightarrow b=45:5=9.\)
Vậy \(a=1;b=9;c=5.\)
b) Theo bài ra, ta có:
\(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)
Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)
\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.
\(2012\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)
\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)
\(92\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}=4n\left(n\in N\right)\)
\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)
Thay vào, ta được :
\(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)
\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2
\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5
\(\Rightarrow A⋮5.\)
Vậy A là một số tự nhiên chia hết cho 5.
\(\)
* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^
Đáp án cần chọn là: B
Số chia hết cho 2 và 5 có tận cùng là 0 nên chữ số hàng đơn vị của các số này là 0.
Chữ số hàng nghìn của số này là số nhỏ nhất trong 4 số còn lại nên chữ số hàng nghìn là 5
Chữ số hàng trăm là 7 và chữ số hàng chục là 8.
Vậy số cần tìm là 5780.