Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
Ta có:
\(S_{ABC}=pr;S_{ACD}=\frac{AC+CD+AD}{2}.r_1;S_{ABD}=\frac{AB+BD+AD}{2}.r_2\)
Vì AD là tia phân giác \(\widehat{BAC}\)nên đường cao từ D đến AB và AC là bằng nhau.
\(\Rightarrow\hept{\begin{cases}S_{ACD}=\frac{S_{ABC}}{3}\\S_{ABD}=\frac{2S_{ABC}}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{AC+CD+AD}{2}.r_1=\frac{pr}{3}\\\frac{AB+BD+AD}{2}.r_2=\frac{2pr}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}AC+CD+AD=\frac{2pr}{3r_1}\left(1\right)\\AB+BD+AD=\frac{4pr}{3r_2}\left(2\right)\end{cases}}\)
Lấy (1) + (2) ta dược
\(AC+CD+AB+BD+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow2p+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow AD=\frac{pr}{3r_1}+\frac{2pr}{3r_2}-p=\frac{pr}{3}\left(\frac{1}{r_1}+\frac{2}{r_2}\right)-p\)
Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
=>ΔABC đồng dạng vơi ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
a: Xét ΔABC và ΔADB có
\(\widehat{ABC}=\widehat{ADB}\)
\(\widehat{BAC}\) chung
Do đó: ΔABC\(\sim\)ΔADB
Suy ra: AB/AD=AC/AB
hay \(AB^2=AD\cdot AC\)
Điểm H ở đâu vậy bạn?
a gọi I là trung điểm của A=> I thuộc đường tròn (O) vì OI-1/2.)OA=1.2.2R=R= BK
có AB,AC là tiếp tuyến của (O)
=>góc ABO=góc ACO=90 độ
=> tam giác ABO vuông tại B, có BI là đường trung tuyến
=> BI=OI=IA
có OI=OC=OB
=> tứ giác OBIC là hình thoi
=> OI là đường phân giác của góc BIC(tính chất hình thoi) hay AI là phân giác góc BAC(1)
lại có ABOC nội tiếp(O) (cmt)
=> AO vuông góc với BC hay AI vuông góc với BC(2), AB=AC(3)
từ (1)(2)(3)=> tam giác ABC đều
O A B C D E
a) Ta thấy ngay \(\widehat{BDA}=\widehat{CBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cung cùng chắn một cung)
Vậy nên \(\Delta ABC\sim\Delta ADB\left(g-g\right)\)
b) Do \(\Delta ABC\sim\Delta ADB\Rightarrow\frac{AB}{AD}=\frac{AC}{AB}\Rightarrow AB^2=AD.AC\)
Xét tam giác vuông OBA có \(AB=\sqrt{AO^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)
Vậy nên \(AD.AC=AB^2=3R^2\)
c) Ta thấy rằng \(\Delta ABC\sim\Delta ADB\Rightarrow\widehat{ABC}=\widehat{ADB}\)
Vậy thì \(\widehat{BEA}=\widehat{DBE}+\widehat{BDE}=\widehat{ABC}+\widehat{CBE}=\widehat{ABE}\)
Suy ra tam giác ABE cân tại A hay AB = AE.
Do A, B cố định nên AE không đổi.
Vậy khi cát tuyến ACD quay xung quanh A thì E di chuyển trên đường tròn tâm A, bán kính AB.
d) Ta có AC.AD = 3R2 ; AC + AD = 7R/2
nên ta có phương trình \(AC\left(\frac{7R}{2}-AC\right)=3R^2\)
\(\Leftrightarrow AC^2-\frac{7R}{2}AC+3R^2=0\Leftrightarrow AC=2R\)
\(\Rightarrow AD=\frac{3R}{2}\)
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AH*AO=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
a, Ta có : góc ABC = góc CDB ( = 1/2 sđ cung BC nhỏ )
=> tam giác ABC đồng dạng với tam giác ADB (g.g)
=> AB/AD = AC/AB
=> AB^2 = AC.AD
Tk mk nha