Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk lm 1 bài bn minh họa ; rồi bn lm câu còn lại cho quen nha
đối với loại bài này ta chỉ cần nhân liên hợp là được :
ta có : \(\dfrac{13}{\sqrt{3}-2}=\dfrac{13\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}=\dfrac{13\sqrt{3}+26}{\left(\sqrt{3}\right)^2-2^2}\)
\(=\dfrac{13\sqrt{3}+26}{3-4}=\dfrac{13\sqrt{3}+26}{-1}=-13\sqrt{3}-26\)
bạn làm từng bước đường bỏ bước là đc .
a=1/(√3+√2+1)=(√3-(√2+1)/[3-(√2+1)^2]
=(√3-√2-1)/(3-(3+2√2)
=(√3-√2-1)/(-2√2)
=-(√6-2-√2)/4
=(2+√2-√6)/4
a: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{3}}{7+2\sqrt{10}-3}=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{3}}{4+2\sqrt{10}}\)
\(=\dfrac{-\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(4-2\sqrt{10}\right)}{24}\)
b: \(=\dfrac{2+\sqrt{3}+\sqrt{5}}{4-8+2\sqrt{15}}=\dfrac{2+\sqrt{3}+\sqrt{5}}{2\sqrt{15}-4}\)
\(=\dfrac{\left(2+\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{15}+4\right)}{44}\)
a. \(\dfrac{1}{\sqrt{5}-\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{3}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{3}\right)^2-2}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{5+3-2-2\sqrt{15}}=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{6-2\sqrt{15}}=\dfrac{\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)\left(3+\sqrt{15}\right)}{\left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right)2}=\dfrac{3\sqrt{5}-3\sqrt{3}-3\sqrt{2}+5\sqrt{3}-3\sqrt{5}-\sqrt{30}}{\left(9-15\right).2}=\dfrac{2\sqrt{3}-3\sqrt{2}-\sqrt{30}}{-12}\)b. \(\dfrac{1}{2-\sqrt{3}-\sqrt{5}}=\dfrac{2-\sqrt{3}+\sqrt{5}}{\left(2-\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}+\sqrt{5}\right)}=\dfrac{2-\sqrt{3}+\sqrt{5}}{\left(2-\sqrt{3}\right)^2-5}=\dfrac{2-\sqrt{3}+\sqrt{5}}{4-4\sqrt{3}+3-5}=\dfrac{2-\sqrt{3}+\sqrt{5}}{2-4\sqrt{3}}=\dfrac{\left(2-\sqrt{3}+\sqrt{5}\right)\left(1+2\sqrt{3}\right)}{2\left(1-2\sqrt{3}\right)\left(1+2\sqrt{3}\right)}=\dfrac{2+4\sqrt{3}-\sqrt{3}-6+\sqrt{5}+2\sqrt{15}}{2.\left(1-12\right)}=\dfrac{3\sqrt{3}+\sqrt{5}+2\sqrt{15}-4}{-22}\)
a) \(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\dfrac{\sqrt{2}+2+\sqrt{6}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}+3-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}}=\dfrac{1+\sqrt{2}+\sqrt{3}}{2}\)
b) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}+5-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{2\sqrt{6}\cdot\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{12}\)
a) \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}+1-\sqrt{2}}{\left(\sqrt{3}+1+\sqrt{2}\right)\left(\sqrt{3}+1-\sqrt{2}\right)}\)
= \(\dfrac{\sqrt{3}+1-\sqrt{2}}{\left(\sqrt{3}+1\right)^2-2}=\dfrac{\left(\sqrt{3}+1-\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
= \(\dfrac{3-\sqrt{3}+\sqrt{3}-1-\sqrt{6}+\sqrt{2}}{2\left(3-1\right)}\) = \(\dfrac{2-\sqrt{6}+\sqrt{2}}{4}\)
b) \(\dfrac{1}{\sqrt{5}+2-\sqrt{3}}=\dfrac{\sqrt{5}+2+\sqrt{3}}{\left(\sqrt{5}+2\right)^2-3}\) = \(\dfrac{\sqrt{5}+\sqrt{3}+2}{4\sqrt{5}+6}\)
= \(\dfrac{\left(\sqrt{5}+\sqrt{3}+2\right)\left(4\sqrt{5}-6\right)}{\left(4\sqrt{5}+6\right)\left(4\sqrt{5}-6\right)}\) = \(\dfrac{20-6\sqrt{5}+4\sqrt{15}-6\sqrt{3}+8\sqrt{5}-12}{\left(4\sqrt{5}\right)^2-36}\)
= \(\dfrac{8+2\sqrt{5}-6\sqrt{3}+4\sqrt{15}}{44}\) = \(\dfrac{2\left(4+\sqrt{5}-3\sqrt{3}+2\sqrt{15}\right)}{2\left(22\right)}\)
= \(\dfrac{4+\sqrt{5}-3\sqrt{3}+2\sqrt{15}}{22}\)
mấy bài dạng này bn nên sử dụng cách nhân liên hợp hoặc phân tích đa thức thành nhân tử nha . mk lm 1 bài còn lại thì bn tự lm cho quen nha :)
a) ta có : \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}=\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right)\left(2\sqrt{3}+\sqrt{7}\right)}\)
\(=\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{\left(2\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}=\dfrac{13\sqrt{2}+3\sqrt{42}}{5}\)
gợi ý : b) phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức số \(6\)
c) nhân liên hợp 2 lần nha .
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)
=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right).\left(2\sqrt{3}+\sqrt{7}\right)}\)
=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right).\left(2\sqrt{3}+\sqrt{7}\right)}{12-7}\)
=\(\dfrac{2\sqrt{18}+\sqrt{42}+2\sqrt{42}+\sqrt{98}}{5}\)
=\(\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{5}\)
=\(\dfrac{3\sqrt{42}+13\sqrt{2}}{5}\)
b) \(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
=\(\dfrac{\left(5\sqrt{5}+3\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}\)
=\(\dfrac{25-5\sqrt{15}+3\sqrt{15}-9}{2}\)
=\(\dfrac{16-2\sqrt{15}}{2}=8-\sqrt{15}\)
Câu c mk chưa làm được
Lời giải:
a) \(\frac{1}{1-\sqrt[3]{5}}=\frac{1+\sqrt[3]{5}+\sqrt[3]{5^2}}{(1-\sqrt[3]{5})(1+\sqrt[3]{5}+\sqrt[3]{25})}\) \(=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{1^3-5}=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{-4}\)
b)
\(\frac{1}{\sqrt[3]{2}+\sqrt[3]{3}}=\frac{\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2}}{(\sqrt[3]{2}+\sqrt[3]{3})(\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2})}\) \(=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{2+3}=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{5}\)
c)
\(\frac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}=\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{2^2}+\sqrt[3]{2}+1)}=\frac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)
\(\dfrac{\sqrt{2+5}}{\sqrt{2}+3}=\dfrac{\sqrt{7}\left(\sqrt{2}-3\right)}{2-9}=\dfrac{\sqrt{14}-3\sqrt{7}}{-7}=\dfrac{3\sqrt{7}-\sqrt{14}}{7}\)