K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng. Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0). a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\) b) Tìm điểm D đối xứng của A qua C Bài 4: Trong mặt phẳng Oxy, cho ba...
Đọc tiếp

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng.

Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0).

a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\)

b) Tìm điểm D đối xứng của A qua C

Bài 4: Trong mặt phẳng Oxy, cho ba điểm A(1;-2), B(0;4), C(3;2)

a) Tìm tọa độ các vector \(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BC}\)

b) Tìm tọa độ trung điểm I của đoạn AB

c) Tìm tọa độ điểm M sao cho: \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)

d) Tìm tọa độ điểm N sao cho: \(\overrightarrow{AN}+2\overrightarrow{BN}-4\overrightarrow{CN}=\overrightarrow{0}\)

0
26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

NV
7 tháng 1 2021

Đặt \(\overrightarrow{PB}=x\overrightarrow{BC}\)

\(\overrightarrow{PM}=\overrightarrow{PB}+\overrightarrow{BM}=x.\overrightarrow{BC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(\overrightarrow{PN}=\overrightarrow{PC}+\overrightarrow{CN}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AC}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(=\left(x+\dfrac{1}{2}\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AB}\)

P, M, N thẳng hàng \(\Rightarrow\dfrac{x+\dfrac{1}{2}}{x}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{3}}\Rightarrow x=1\) \(\Rightarrow\overrightarrow{PB}=\overrightarrow{BC}\)

\(\Rightarrow\) B là trung điểm PC \(\Rightarrow P\left(-6;5\right)\)

Nếu bạn chưa học bài pt đường thẳng thì làm cách trên, còn học rồi thì đơn giản là thiết lập 2 pt đường thẳng BC và MN là xong

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

9 tháng 8 2019

Hok nhanh phết đấy =))

\(\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BA}\right|\Rightarrow\sqrt{\left(x_D-x_c\right)^2+\left(y_D-y_C\right)^2}=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)

\(\Leftrightarrow\sqrt{\left(x_D-0\right)^2+\left(y_D-4\right)^2}=\sqrt{\left(1-3\right)^2+\left(-2-2\right)^2}\)

\(\Leftrightarrow x_D^2+y_D^2-8y_D+16=20\)

\(\Leftrightarrow x_D^2+y^2_D-8y_D=4\) (1)

\(\left|\overrightarrow{DA}\right|=\left|\overrightarrow{CB}\right|\Rightarrow\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\)

\(\Leftrightarrow\left(1-x_D\right)^2+\left(-2-y_D\right)^2=\left(3-0\right)^2+\left(2-4\right)^2\)

\(\Leftrightarrow1-2x_D+x_D^2+4+4y_D+y_D^2=13\)

\(\Leftrightarrow x_D^2+y_D^2-2x_D+4y_D=8\)(2)

từ (1) và (2) suy ra hpt r giải ra là xong

9 tháng 8 2019

3/ Xét VP trc

Ta có M là TĐ AB\(\Rightarrow\overrightarrow{AM}=\frac{\overrightarrow{AB}}{2}\)

\(\Rightarrow VP=\frac{2}{3}.\frac{1}{2}.\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\)

vì G là trọng tâm\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}\)

Theo quy tắc TĐ:\(\overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}.\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}=VP\)

câu 4 thầy mk chưa dạy nên chưa nghĩ ra cách lm, chắc để tối nghĩ :))

5 tháng 8 2019

tối thử

15 tháng 5 2016

A 2 y -2 -2 4 B C x

Vì G là trọng tâm tam giác ABC, nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)

Vì M là trung điểm của BC, nên ta có :

\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)

Vậy \(C\left(2-x_1;-2-y_1\right)\)

Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)

Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)

\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)

\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\)  (1)

Do AB = AC nên \(AB^2=AC^2\)

\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)

\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)

\(\Leftrightarrow x_1=3y_1+4\)    (2)

Thay (2) vào (1) ta có : 

\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)

Từ đó ta có :

\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)

Tóm lại ta có : 

\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm

(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)

15 tháng 5 2016

Vì G là trọng tâm của tam giác ABC nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Ta thấy MA có hệ số góc

\(k=\frac{2-\left(-1\right)}{0-1}=-3\)

Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :

\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)

Mặt khác do :

\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)

Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)

\(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Vậy tọa độ của B, C là nghiệm của hệ phương trình :

\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)

Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm

AH
Akai Haruma
Giáo viên
25 tháng 10 2017

Lời giải:

Với $M$ là trung điểm của $AB$, $N$ là trung điểm của $AC$ thì $MN$ là đường trung bình của tam giác $ABC$

Do đó \(\overrightarrow {MN}=\frac{1}{2}\overrightarrow {BC}\)

Mà \(B(9;7);C(11;-1)\Rightarrow \overrightarrow {BC}=(2;-8)\)

\(\Rightarrow \overrightarrow{MN}=\frac{1}{2}\overrightarrow{BC}=(1;-4)\)