Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)
a/ CD qua E và vuông góc BC nên pt có dạng:
\(1\left(x-6\right)-1\left(y-0\right)=0\Leftrightarrow x-y-6=0\)
Ta có: \(AB=d\left(A;BC\right)=\frac{\left|3+5-2\right|}{\sqrt{1^2+1^2}}=3\sqrt{2}\)
\(AD=d\left(A;CD\right)=\frac{\left|3-5-6\right|}{\sqrt{1^2+\left(-1\right)^2}}=4\sqrt{2}\)
\(\Rightarrow S_{ABCD}=AB.AD=24\)
b/ Do M thuộc d nên tọa độ có dạng: \(M\left(1+t;2-3t\right)\)
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=4\Leftrightarrow\frac{\left|3\left(1+t\right)+4\left(2-3t\right)+5\right|}{\sqrt{3^2+4^2}}=4\)
\(\Leftrightarrow\left|16-9t\right|=20\Rightarrow\left[{}\begin{matrix}16-9t=20\\16-9t=-20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=-\frac{4}{9}\\t=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}M\left(\frac{5}{9};\frac{10}{3}\right)\\M\left(5;-10\right)\end{matrix}\right.\)
Có trị tuyệt đối thì chắc đề bài là \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Do M thuộc denta nên tọa độ có dạng \(M\left(m;-m-2\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-m+1;m+4\right)\\\overrightarrow{MB}=\left(-m;m+3\right)\\\overrightarrow{MC}=\left(-m-2;m+3\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(-3m-1;3m+10\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(-3m-1\right)^2+\left(3m+10\right)^2}=\sqrt{18m^2+66m+101}\)
\(=\sqrt{18\left(m+\frac{11}{6}\right)^2+\frac{81}{2}}\ge\frac{9\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(m=-\frac{11}{6}\Rightarrow M\left(-\frac{11}{6};-\frac{1}{6}\right)\)
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
Viết PT đường trung tuyến BK
Xác định K:
xK = \(\frac{x_A+x_C}{2}\) = \(\frac{3}{2}\)
yK = \(\frac{y_A+y_C}{2}\) = \(\frac{9}{2}\)
(BK): \(\frac{x-x_B}{x_K-x_B}=\frac{y-y_B}{y_K-y_B}\)
=> (x-3)/(3/2 - 3) = (y+5)/(9/2 +5)
=> -2(x-3)/3 = 2(y+5)/19
=> -19x + 57 = 3y + 15
=> y = \(\frac{-19x}{3}+14\)
Đường thẳng (d1) vuông góc (BK) có dạng y = 3x/19 +c
do qua A(-1,2) => 2 = -3/19 + c => c = 2 + 3/19 = 41/19
=> (d1): y =\(\frac{3x}{19}+\frac{41}{19}\)
Giả sử đường thẳng cần tìm cắt BC tại M
Ta có \(\frac{S_{ABM}}{S_{ACM}}\)=2
mà S(ABM)/S(ACM) =(AH.BM/2)/(AH.CM/2) = \(\frac{BM}{CM}\) = 2 (AH là đường cao)
=> Vecto MB/ Vecto MC = -2
=> xM = (xB + 2xC)/ 3 = \(\frac{11}{3}\)
=> yM = (yB + 2yC)/3 = \(\frac{9}{3}\) = 3
=> Viết PT đường thẳng (d) đi qua A, M:
(x-xA)/(xM-xA)= (y-yA)/(yM-yA)
=> (x+1)/(11/3 +1) = (y-2)/(3-2)
4(x+1)/14 = y-2
=> y = \(\frac{2x}{7}+\frac{16}{7}\)
bạn ơi tại sao khoảng cách bé nhất lại cho =0 z bạn