Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Dễ thấy đường thẳng $d_1$ đi qua điểm \(M(1,-1,0)\Rightarrow \overrightarrow{MA}=(4,-2,5)\)
Khi đó, nếu $(P)$ là mp chứa \(d_1,MA\) thì \(\overrightarrow{n_P}=[\overrightarrow{d_1},\overrightarrow{MA}]=(1,-3,-2)\)
\(\Rightarrow \text{PTMP}: x-3y-2z-4=0\)
Ta thấy \(C\in (d_2),C\in (P)\Rightarrow \) dễ dàng tìm được tọa độ điểm \(C(-1,-1,-1)\)
Lại có \(B=AC\cap d_1\). Và PTĐT \(AC\): \(\frac{x+1}{3}=\frac{y+1}{-1}=\frac{z+1}{3}\)
\(\Rightarrow B(2,-2,2)\)
Do đó \(BC=\sqrt{19}\)
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)
Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).
Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)
Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)
Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)
\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)
Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Chọn A
Mặt phẳng (P) song song và cách đều hai đường thẳng và nên:
(P) có một véc tơ pháp tuyến là suy ra (P):y-z+D=0
Và d (A, (P))=d (B, (P)) ó |D| = |D – 1| => D = 1/2
Vậy (P): 2y-2z+1=0.
Để tìm phương trình mặt phẳng (P) và tính bán kính đường tròn giao tuyến, ta cần tìm điểm giao giữa mặt cầu (S) và đường thẳng Δ. Đầu tiên, ta thay đổi phương trình đường thẳng Δ từ phương trình chính tắc sang phương trình tham số.
Phương trình tham số của đường thẳng Δ là: x = t y = 1 + t z = 1 + 2t
Tiếp theo, ta thay các giá trị x, y, z vào phương trình mặt cầu (S) để tìm điểm giao: (t)2 + (1 + t + 1)2 + (1 + 2t - 2)2 = 10 t2 + (t + 2)2 + (2t - 1)2 = 10 t2 + t2 + 4t + 4 + 4t2 - 4t + 1 - 10 = 0 6t2 + 4t - 5 = 0
Giải phương trình trên, ta tìm được t = 1/2 và t = -5/6. Thay t vào phương trình tham số của Δ, ta có các điểm giao là: Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Tiếp theo, ta tìm phương trình mặt phẳng (P) đi qua hai điểm giao này. Sử dụng công thức phương trình mặt phẳng đi qua hai điểm: (x - x1)(y2 - y1) - (y - y1)(x2 - x1) = 0
Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Thay các giá trị vào công thức, ta có: (x - 1/2)((1/6) - (3/2)) - (y - 3/2)((-5/6) - (1/2)) + (z - 5/2)((-1/6) - (3/2)) = 0 -2x + 2y - z + 4 = 0
Vậy phương trình mặt phẳng (P) là: -2x + 2y - z + 4 = 0.
Tiếp theo, để tính bán kính đường tròn giao tuyến, ta tính khoảng cách từ tâm mặt cầu đến mặt phẳng (P). Khoảng cách này chính bằng bán kính đường tròn giao tuyến.
Đặt điểm A là tâm mặt cầu (x0, y0, z0) = (0, -1, 2). Khoảng cách từ A đến mặt phẳng (P) được tính bằng công thức: d = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)
Thay các giá trị vào công thức, ta có: d = |(0)(-2) + (-1)(2) + (2)(-1) + 4| / sqrt((-2)^2 + 2^2 + (-1)^2) d = 5 / sqrt(9) d = 5/3
Vậy bán kính đường tròn giao tuyến là 5/3.
Vậy đáp án đúng là: (P): -2x + 2y - z + 4 = 0; r = 5/3
B C A D H K J S
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)
\(\overrightarrow{u_{d1}}=\left(-1;1;1\right)\) ; \(\overrightarrow{u_{d2}}=\left(2;-1;-1\right)\)
\(\Rightarrow\left[\overrightarrow{u_{d1}};\overrightarrow{u_{d2}}\right]=\left(0;1;-1\right)\)
Do (P) song song \(d_1;d_2\Rightarrow\left(P\right)\) nhận \(\left(0;1;-1\right)\) là 1 vtpt
Phương trình (P) có dạng: \(y-z+c=0\)
Lấy \(A\left(2;0;0\right)\in d_1\) và \(B\left(0;1;2\right)\in d_2\)
Do (P) cách đều 2 đường thẳng \(\Rightarrow d\left(A;\left(P\right)\right)=d\left(B;\left(P\right)\right)\)
\(\Rightarrow\dfrac{\left|0-0+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|1-2+c\right|}{\sqrt{1^2+\left(-1\right)^2}}\Rightarrow\left|c\right|=\left|c-1\right|\)
\(\Rightarrow c=\dfrac{1}{2}\Rightarrow\) phương trình (P) có dạng:
\(y-z+\dfrac{1}{2}=0\)