Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{n_{\left(P\right)}}=\left(7;3k;m\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(k;-m;1\right)\) ; \(\overrightarrow{n_{\alpha}}=\left(1;1;-2\right)\)
Gọi d là giao tuyến của \(\left(P\right)\) và \(\left(Q\right)\Rightarrow\) d có 1 vtcp \(\overrightarrow{u_d}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]\)
\(\Rightarrow\overrightarrow{u_d}=\left(3k+m^2;mk-7;-7m-3k^2\right)\)
Mà \(d\perp\left(\alpha\right)\Rightarrow\) \(\overrightarrow{u_d}\) tương ứng tỉ lệ với \(\overrightarrow{n_{\alpha}}\)
\(\Rightarrow\frac{3k+m^2}{1}=\frac{mk-7}{1}=\frac{7m+3k^2}{2}=\frac{3k^2+m^2k}{k}=\frac{m^2k-7m}{k-2}=\frac{m\left(mk-7\right)}{k-2}\)
\(\Rightarrow\frac{mk-7}{1}=\frac{m\left(mk-7\right)}{k-2}\Rightarrow m=k-2\) (do nếu \(mk-7=0\) thì 3 thành phần của vecto \(\overrightarrow{u_d}\) đều bằng 0, vô nghĩa)
\(\Rightarrow3k+\left(k-2\right)^2=k\left(k-2\right)-7\) \(\Rightarrow\left\{{}\begin{matrix}k=-11\\m=-13\end{matrix}\right.\)
Đáp án có vấn đề thì phải, thay vào được \(\overrightarrow{u_d}=\left(136;136;-272\right)\) (đúng)
Bạn nói mới để ý mình xác định nhầm dấu \(\overrightarrow{n_{\alpha}}=\left(1;-1;-2\right)\) mới đúng
\(d\left(A,\left(\alpha\right)\right)=\frac{4}{3}\)
\(\left(\beta\right)\)//\(\left(\alpha\right)\) nên phương trình \(\left(\beta\right)\) có dạng : \(x+2y-2z+d=0,d\ne-1\)
\(d\left(A,\left(\alpha\right)\right)=d\left(A,\left(\beta\right)\right)\)\(\Leftrightarrow\frac{\left|5+d\right|}{3}=\frac{4}{3}\Leftrightarrow\begin{cases}d=-1\\d-9\end{cases}\)\(\Leftrightarrow d=-9\left(d=-1loai\right)\)\(\Rightarrow\left(\beta\right):x+2y-2z-9=0\)
Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .
Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .
Phương trình mặt phẳng (α) có dạng:
2(x - 2) - (y + 1) + 3(z - 2) = 0
hay 2x - y + 3z -11 = 0.
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Ta có \(\overrightarrow{n}_{\beta}=\left(1;3k;-1\right);\overrightarrow{n}_{\gamma}=\left(k;-1;1\right)\)
Gọi \(d_k=\beta\cap\gamma\)