\(\left|MA-MB\right|\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

18 tháng 5 2017

M thuộc trục hoành Ox nên \(M\left(x;0\right)\).
\(\overrightarrow{MA}\left(5-x;5\right);\overrightarrow{MB}\left(3-x;-2\right)\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\left(8-x;3\right)\)
Ta có:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(8-x\right)^2+3^2}\ge\sqrt{3^2}=3\).
Vậy giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) bằng 3 khi x = 8 hay \(M\left(8;0\right)\).

NV
8 tháng 10 2019

Gọi \(M\left(0;a\right)\)

\(\Rightarrow\overrightarrow{MA}=\left(-2;-2-a\right);\) \(\overrightarrow{MB}=\left(0;3-a\right)\); \(\overrightarrow{MC}=\left(3;-a\right)\)

\(\Rightarrow\overrightarrow{MA}-\overrightarrow{MB}-2\overrightarrow{MC}=\left(-8;2a-5\right)\)

\(\Rightarrow\left|\overrightarrow{MA}-\overrightarrow{MB}-2\overrightarrow{MC}\right|=\sqrt{64+\left(2a-5\right)^2}\ge8\)

Dấu "=" xảy ra khi \(2a-5=0\Rightarrow a=\frac{5}{2}\Rightarrow M\left(0;\frac{5}{2}\right)\)

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)

20 tháng 6 2020

M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)

MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4

MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5

MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4

= ( 2t + 1/2 )2 + 35/4 >= 35/4

vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)

#mã mã#