K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Gọi phương trình đường thẳng $AB$ là $y=ax+b$

Khi đó: \(\left\{\begin{matrix} 4=2a+b\\ -1=-3a+b\end{matrix}\right.\Rightarrow 5a=5\Rightarrow a=1\Rightarrow b=2\)

Vậy ptđt $AB$ có dạng $y=x+2$

Lại thấy: \(1\neq (-2)+2\) nên $C$ không thể thuộc đường thẳng $AB$

Suy ra $A,B,C$ không thẳng hàng. Bạn xem lại đề.

16 tháng 11 2018

Gọi \(A\left(x_1;y_1\right);B\left(x_2;y_2\right);C\left(x_3;y_3\right)\)

Độ dài AB: \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(=\sqrt{\left(2-\left(-3\right)\right)^2+\left(4-\left(-1\right)^2\right)}\) \(=5\sqrt{2}\) (đvđd)

Độ dài BC: \(BC=\sqrt{\left(\left(-3\right)-\left(-2\right)\right)^2+\left[\left(-1\right)-1\right]^2}\)

\(=\sqrt{\left(-1\right)^2+\left(-2\right)^2}\) \(=\sqrt{1+4}=\sqrt{5}\)(đvđd)

\(AC=\sqrt{\left(2-\left(-2\right)\right)^2+\left(4-1\right)^2}=5\)(đvđd)

\(\Rightarrow AB+BC\ne AC\)\(\Rightarrow A,B,C\) không thẳng hàng

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

1)

Xét pt hoành độ giao điểm:

\(x^2-(2x+3)=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow (x-3)(x+1)=0\Leftrightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)

PT hoành độ giao điểm có hai nghiệm pb nên hai đths cũng cắt nhau tại hai điểm phân biệt hay nó có hai điểm chung phân biệt (đpcm)

2)

Không mất tổng quát giả sử \(x_A=3, x_B=-1\)

\(\Rightarrow y_A=9; y_B=1\)

\(\Rightarrow OA=\sqrt{(x_A-0)^2+(y_A-0)^2}=3\sqrt{10}\)

\(OB=\sqrt{(x_B-0)^2+(y_B-0)^2}=\sqrt{2}\)

\(AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=4\sqrt{5}\)

Áp dụng công thức Herong với $p$ là nửa chu vi, $a=OA, b=OB,c=AB$ thì:

\(S_{OAB}=\sqrt{p(p-a)(p-b)(p-c)}=6\) (đơn vị diện tích)

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Van Han: công thức tính khoảng cách hai điểm mình nghĩ phải học rồi chứ.

\(A(x_A,y_A); B(x_B,y_B)\Rightarrow AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}\)

Ngoài ra bạn có thể tính theo cách sau sẽ đơn giản hơn:

Từ $A,B$ kẻ đường thẳng vuông góc với $Ox$ cắt $Ox$ tại $C,D$

Từ tọa độ $A,B$ đã biết suy ra \(C(3,0);D(-1,0)\). Trên mặt phẳng tọa độ ta có:

\( OD=|x_D|=1; OC=|x_C|=3\)

\(BD=|y_B|=1; AC=|y_A|=9\)

Do đó:

\(S_{BOD}=\frac{BD.DO}{2}=\frac{1.1}{2}=\frac{1}{2}\)

\(S_{AOC}=\frac{AC.OC}{2}=\frac{9.3}{2}=\frac{27}{2}\)

\(S_{ABDC}=\frac{(BD+AC).DC}{2}=\frac{(1+9).(1+3)}{2}=20\)

Có: \(S_{AOB}=S_{ABDC}-S_{AOC}-S_{BOD}=20-\frac{27}{2}-\frac{1}{2}=6\)

Gọi phương trình đường thẳng AB là \(d:y=ax+b\)  

Vì d đi qua \(A\left(2;4\right)\) \(\Rightarrow2a+b=4\)

Vì d đi qua \(B\left(-3;-1\right)\) \(\Rightarrow-3a+b=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow d:y=x+2\)

Thay \(C\left(-2;1\right)\) vào \(y=x+2\) ta thấy: \(-2+2\ne1\)

  \(\Rightarrow C\notin AB\)

  Vậy A, B, C không thẳng hàng

 

30 tháng 8 2020

D(-2,5;2,5) chứ

30 tháng 8 2020

Haiz, đề đúng mà.

NV
31 tháng 7 2020

Pt hoành độ giao điểm:

\(3x^2+2\left(m+1\right)x-1=0\) (1)

\(ac=-3< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) tại 2 điểm pb với mọi m

Do \(x_1;x_2\) là nghiệm nên: \(\left\{{}\begin{matrix}3x_1^2+2\left(m+1\right)x_1-1=0\\3x_2^2+2\left(m+1\right)x_2-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)x_1=\frac{1-3x_1^2}{2}\\\left(m+1\right)x_2=\frac{1-3x_2^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)\left(x_1+x_2\right)=1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2\)

\(f\left(x_1\right)-f\left(x_2\right)=x_1^3-x_2^3+\left(m+1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)\)

\(=\left(x_1-x_2\right)\left(x^2_1+x_2^2+x_1x_2+\left(m+1\right)\left(x_1+x_2\right)-1\right)\)

\(=\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2+1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2-1\right)\)

\(=-\frac{1}{2}\left(x_1-x_2\right)\left(x_1^2+x_2^2-2x_1x_2\right)=-\frac{1}{2}\left(x_1-x_2\right)^3\)

1 tháng 3 2017

TDT thì kb vs mk nha

16 tháng 3 2017

cau1: gọi H là chân đường cao kẻ từ O đến đt (d) .\(\Rightarrow OH=2\)

giao điểm (d) và Oy la A(0,4) va giao diem (d) voi Ox la B(\(\dfrac{4}{1-m}\),0)

ta có \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(\Leftrightarrow\dfrac{1}{4}=\dfrac{1}{16}+\dfrac{\left(1-m\right)^2}{16}=\dfrac{1+\left(1-m\right)^2}{16}\)

\(\Rightarrow\left[{}\begin{matrix}1-m=\sqrt{3}\\1-m=-\sqrt{3}\end{matrix}\right.\Rightarrow m=1+\sqrt{3}\left(m>0\right)\)

cau2: goi \(\Delta\)là đường thẳng đi qua B(-5 ;20) vã C(7;-16) Pt \(\Delta\): y= ax+b

tọa độ B,C thõa mãn pt \(\Delta\)\(\left\{{}\begin{matrix}20=-5a+b\\-16=7a+b\end{matrix}\right.\Rightarrow a=-3;b=5\)

\(\Rightarrow\)y= -3x +5 (\(\Delta\)).để 3 điểm A ,B ,C thẳng hàng thi toa do A(\(\sqrt{x-1},-37\)).thoa pt\(\Delta\)

-37= -3\(\sqrt{x-1}+5\)\(\Leftrightarrow\sqrt{x-1}=14\)

\(\Rightarrow x=197\)