Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(W_{lkr}= \frac{W_{lk}}{A}\)
Năng lượng liên kết riêng của các hạt nhân lần lượt là 1,11 MeV; 0,7075 MeV; 8,7857 MeV; 7,6 MeV.
Hạt nhân kém bền vững nhất là \(_2^4He\).
\(W_{lkr}= \frac{W_{lk}}{A}\)
Năng lượng liên kết riêng của \(_1^2H\), \(_1^3H\), \(_2^4He\) lần lượt là 1,11 MeV; 2,83 MeV; 7,04 MeV.
Hạt nhân có năng lượng liên kết riêng càng lớn thì càng bền vững
=> Thứ tự giảm dẫn về độ bền vững là \(_2^4He\), \(_1^3H\), \(_1^2H\).
Số hạt nhân heli trong 1 gam Heli là
\(N = \frac{m}{A}N_A= \frac{1}{4}6,02.10^{23}= 1,505.10^{23}\)
Phản ứng hạt nhân
\(_1^2H+_1^3H \rightarrow _2^4He + _0^1 n + 17,6 MeV\)
Năng lượng tỏa ra khi tổng hợp 1 hạt nhân Heli là 17,6 MeV.
=> năng lượng tỏa ra khi tổng hợp được 1,505.1023 hạt nhân Heli là
17,6. 1,505.1023 = 2,6488.1024 MeV = 2,6488.106.1,6.10-19 = 4,23808.1011 J.
\(m_t = m_{Na}+ m_H = 22,9837+ 1,0073 = 23,991u.\)
\(m_s = m_{He}+ m_{Ne} = 19,9869+ 4,0015 = 23,9884u.\)
=> \(m_t > m_s\), phản ứng là tỏa năng lượng.
Năng lượng tỏa ra là
\(E = (m_t-m_s)c^2 = 2,6.10^{-3}uc^2 = 2,6.10^{-3}.931,5 = 2,4219 MeV.\)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc
Cứ 1 hạt nhân \(_{92}^{238}U\) bị phân rã tạo ra 1 hạt nhân \(_{82}^{206}Pb\). Từ đó ta có nhận xét là số hạt nhân \(_{92}^{238}U\) bị phân rã chính bằng số hạt nhân \(_{82}^{206}Pb\) tạo thành.
Tỉ số giữa số hạt nhân \(_{92}^{238}U\) bị phân rã và số hạt nhân \(_{92}^{238}U\) còn lại là
\(\frac{\Delta N}{N}= \frac{6,239.10^{18}}{1,188.10^{20}}= 0,0525 = \frac{1-2^{-\frac{t}{T}}}{2^{-\frac{t}{T}}}\)
Nhân chéo => \(2^{-\frac{t}{T}}= 0,95.\)
=> \(t = -T\ln_2 0,95 = 3,3.10^8\)(năm)
=> Tuổi của khối đã là 3,3.108 năm.
Các hạt nhân bền vững có năng lượng liên kết riêng lớn nhất cỡ 8,8 MeV/nuclôn ; đó là những hạt nhân có số khối trong khoảng 50 < A < 95.