K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đáp án đúng là D

+ Xét điểm \(\left( {1;1} \right)\) ta có: \(y = 2 - 4.1 =  - 2 \ne 1\). Do đó, điểm \(\left( {1;1} \right)\)không thuộc đồ thị hàm số.

+ Xét điểm \(\left( {2;0} \right)\) ta có: \(y = 2 - 4.2 =  - 6 \ne 2\). Do đó, điểm \(\left( {2;0} \right)\)không thuộc đồ thị hàm số.

+ Xét điểm \(\left( {1; - 1} \right)\) ta có: \(y = 2 - 4.1 =  - 2 \ne  - 1\). Do đó, điểm \(\left( {1; - 1} \right)\)không thuộc đồ thị hàm số.

+ Xét điểm \(\left( {1; - 2} \right)\) ta có: \(y = 2 - 4.1 =  - 2\). Do đó, điểm \(\left( {1; - 2} \right)\) thuộc đồ thị hàm số.

12 tháng 9 2023

Thế lần lượt chọn ý D

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đáp án đúng là D

+ Xét điểm \(\left( {1;1} \right)\) ta có: \(y =  - 5.1 + 5 = 0 \ne 1\). Do đó, điểm \(\left( {1;1} \right)\)không thuộc đồ thị hàm số.

+ Xét điểm \(\left( {2;0} \right)\) ta có: \(y =  - 5.2 + 5 =  - 5 \ne 0\). Do đó, điểm \(\left( {2;0} \right)\)không thuộc đồ thị hàm số.

+ Xét điểm \(\left( {0;4} \right)\) ta có: \(y =  - 5.0 + 5 = 5 \ne 4\). Do đó, điểm \(\left( {0;4} \right)\)không thuộc đồ thị hàm số.

+ Xét điểm \(\left( {2; - 5} \right)\) ta có: \(y =  - 5.2 + 5 =  - 5\). Do đó, điểm \(\left( {2; - 5} \right)\) thuộc đồ thị hàm số.

M và P thuộc đồ thị y=4x

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Xét điểm \(M\left( { - 1; - 4} \right)\) ta có:

\(f\left( { - 1} \right) = 4.\left( { - 1} \right) =  - 4\). Do đó, điểm \(M\left( { - 1; - 4} \right)\) thuộc vào đồ thị hàm số \(y = 4x\).

Xét điểm \(N\left( {1; - 4} \right)\) ta có:

\(f\left( 1 \right) = 4.1 = 4 \ne  - 4\). Do đó, điểm \(N\left( {1; - 4} \right)\) không thuộc vào đồ thị hàm số \(y = 4x\).

Xét điểm \(P\left( {\dfrac{1}{4};1} \right)\) ta có:

\(f\left( {\dfrac{1}{4}} \right) = 4.\dfrac{1}{4} = 1\). Do đó, điểm \(P\left( {\dfrac{1}{4};1} \right)\) không thuộc vào đồ thị hàm số \(y = 4x\).

25 tháng 6 2019

Baif2:

A=\(12x^2+20x-8+9\) 

   =\(4\left(3x^2+5x-2\right)+9\) 

   =4.0+9

    = 9

vậy A=............

hc tốt

25 tháng 6 2019

\(3x^2+5x-2=0\)

\(\Leftrightarrow3x^2-x+6x-2=0\)

\(\Leftrightarrow x\left(3x-1\right)+2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

16 tháng 6 2017

Bài 1 :

a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)

\(\Leftrightarrow9x^2-6x+1-\left(9x^2-4\right)=2014\)

\(\Leftrightarrow-6x=2009\)

\(\Leftrightarrow x=-\dfrac{2009}{6}=-334\dfrac{5}{6}\)

b) \(5x^2+4xy+4y^2+4x+1=0\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)=0\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{4}\end{matrix}\right.\)

Bài 2 :

Ta có :

\(D=\left(4x^2-12xy+9y^2\right)-\left(9y^2-4\right)-\left(1-4x+4x^2\right)+12xy-4x\)

\(=4x^2-12xy+9y^2-9y^2+4-1+4x-4x^2+12xy-4x=3\)

Vậy biểu thức D không phụ thuộc vào các biến x,y

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Ta có:

\(f\left( {\dfrac{1}{5}} \right) = \dfrac{5}{{4.\dfrac{1}{5}}} = \dfrac{5}{{\dfrac{4}{5}}} = 5:\dfrac{4}{5} = 5.\dfrac{5}{4} = \dfrac{{25}}{4};\)

\(f\left( { - 5} \right) = \dfrac{5}{{4.\left( { - 5} \right)}} = \dfrac{5}{{ - 20}} = \dfrac{{ - 1}}{4};\)

\(f\left( {\dfrac{4}{5}} \right) = \dfrac{5}{{4.\dfrac{4}{5}}} = \dfrac{5}{{\dfrac{{16}}{5}}} = 5:\dfrac{{16}}{5} = 5.\dfrac{5}{{16}} = \dfrac{{25}}{{16}}\)

b) Ta có:

\(f\left( { - 3} \right) = \dfrac{5}{{4.\left( { - 3} \right)}} = \dfrac{5}{{ - 12}} = \dfrac{{ - 5}}{{12}};\)

\(f\left( { - 2} \right) = \dfrac{5}{{4.\left( { - 2} \right)}} = \dfrac{5}{{ - 8}} = \dfrac{{ - 5}}{8};\)

\(f\left( { - 1} \right) = \dfrac{5}{{4.\left( { - 1} \right)}} = \dfrac{5}{{ - 4}} = \dfrac{{ - 5}}{4};\)

\(f\left( { - \dfrac{1}{2}} \right) = \dfrac{5}{{4.\left( { - \dfrac{1}{2}} \right)}} = \dfrac{5}{{\dfrac{{ - 4}}{2}}} = \dfrac{5}{{ - 2}} = \dfrac{{ - 5}}{2}\);

\(f\left( {\dfrac{1}{4}} \right) = \dfrac{5}{{4.\dfrac{1}{4}}} = \dfrac{5}{{\dfrac{4}{4}}} = \dfrac{5}{1} = 5\);

\(f\left( 1 \right) = \dfrac{5}{{4.1}} = \dfrac{5}{4}\);

\(f\left( 2 \right) = \dfrac{5}{{4.2}} = \dfrac{5}{8}\)

Ta có bảng sau:

\(x\)

–3

–2

–1

\( - \dfrac{1}{2}\)

\(\dfrac{1}{4}\)

1

2

\(y = f\left( x \right) = \dfrac{5}{{4x}}\)

\(\dfrac{{ - 5}}{{12}}\)

\(\dfrac{{ - 5}}{8}\)

\(\dfrac{{ - 5}}{4}\)

\(\dfrac{{ - 5}}{2}\)

5

\(\dfrac{5}{4}\)

\(\dfrac{5}{8}\) 

12 tháng 9 2023

Từ điểm \(y = 2\) trên \(Oy\) vẽ đường thẳng vuông góc với \(Oy\) cắt đồ thị hàm số tại điểm \(C\). Khi đó, điểm \(C\) là điểm trên đồ thị hàm số có tung độ bằng 2.

12 tháng 9 2023

a) Vì đồ thị hàm số đi qua điểm \(M\left( {1; - 2} \right)\)nên ta có:

\( - 2 = a.1 - 4 \Leftrightarrow a =  - 2 + 4 = 2\)

Hàm số cần tìm là \(y = 2x - 4\) có hệ số góc \(a = 2\).

b) Cho \(x = 0 \Rightarrow y =  - 4\) ta được điểm \(A\left( {0; - 4} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{4}{2} = 2\) ta được điểm \(B\left( {2;0} \right)\) trên \(Ox\).

Đồ thị hàm số là đường thẳng đi qua hai điểm \(A\) và \(B\).