K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Cho 2 đường thẳng cắt nhau  d 1 :   a 1   x   +   b 1 y   +   c 1   = 0   v à   d 2   :   a 2 x   +   b 2 y   +   c 2 =   0 .

Khi đó, phương trình đường phân giác tạo bởi 2 đường thẳng là:

a 1 x + ​ b 1 y + c 1 a 1 2 + ​ b 1 2 =   ±   a 2 x + ​ b 2 y + c 2 a 2 2 + ​ b 2 2

Áp dụng công thức ta có phương trình hai phân giác là:

3 x − 4 y + ​ 1 3 2 + ​ ( − 4 ) 2 =   ±   x + 3 1 2 + 0 2 ⇔ 3 x − 4 y + ​ 1 5 =    ± ( x + ​ 3 ) ⇔ 3 x − 4 y + 1 = ± 5   x ​ + ​ 3 ⇔ 2 x + ​ 4 y + ​ 14 = 0 8 x − 4 y + ​ 16 = 0 ⇔ x + 2 y + ​ 7 = 0 2 x − y + ​ 4 = 0

ĐÁP ÁN C

18 tháng 5 2021

I I 1 I 2 d :3x-4y+1=0 1 d :6x+8y-1=0 2 p:3x+y-1=0

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

\(\frac{\left|3x-4y+1\right|}{5}=\frac{\left|6x+8y-1\right|}{10}\Leftrightarrow\orbr{\begin{cases}2\left(3x-4y+1\right)=6x+8y-1\\2\left(3x-4y+1\right)=-6x-8y+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}16y-3=0\\12x+1=0\end{cases}}\)

Xét hệ \(\hept{\begin{cases}3x+y-1=0\\16y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{48}\\y=\frac{3}{16}\end{cases}}\Rightarrow I_1\left(\frac{13}{48};\frac{3}{16}\right)\Rightarrow R_1=\frac{17}{80}\)

\(\Rightarrow\left(C_1\right):\left(x-\frac{13}{48}\right)^2+\left(y-\frac{3}{16}\right)^2=\frac{289}{6400}\)

Xét hệ: \(\hept{\begin{cases}3x+y-1=0\\12x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{12}\\y=\frac{5}{4}\end{cases}}}\Rightarrow I_2\left(-\frac{1}{12};\frac{5}{4}\right)\Rightarrow R_2=\frac{17}{20}\)

\(\Rightarrow\left(C_2\right):\left(x+\frac{1}{12}\right)^2+\left(y-\frac{5}{4}\right)^2=\frac{289}{400}\).

19 tháng 5 2021

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

|3x−4y+1|5 =|6x+8y−1|10 ⇔[

2(3x−4y+1)=6x+8y−1
2(3x−4y+1)=−6x−8y+1

⇔[

16y−3=0
12x+1=0

Xét hệ {

3x+y−1=0
16y−3=0

⇔{

x=1348 
y=316 

⇒I1(1348 ;316 )⇒R1=1780 

⇒(C1):(x−1348 )2+(y−316 )2=2896400 

Xét hệ: {

3x+y−1=0
12x+1=0

⇔{

x=−112 
y=54 

⇒I2(−112 ;54 )⇒R2=1720 

⇒(C2):(x+112 )2+(y−54 )2=289400 .

13 tháng 2 2016

d1 có 1 vtpt là \(\overrightarrow{n1}\)(2;-1);d2 có 1 vtpt là \(\overrightarrow{n2}\)(3;6)

Ta có \(\overrightarrow{n1}\)\(\times\)\(\overrightarrow{n2}\)=2\(\times\)3-1\(\times\)6=0 nên d1 vuông góc d2 và d1 cắt d2 tại I(I khác P)

Gọi d là đườg thẳng đi qua P;d:A(x-2)+B(y+1)=0\(\Leftrightarrow\)Ax+By-2A+B=0

d cắt d1;d2 tạo thành một tam giác cân có đỉnh I\(\Leftrightarrow\)d tạo với d1(hoặc d2) một góc 45

\(\Leftrightarrow\)\(\frac{\left|2A-B\right|}{\sqrt{A^2+B^2}\sqrt{2^2+\left(-1\right)^2}}\)=\(\cos45\)

\(\Leftrightarrow\)\(3A^2\)-8AB-\(3B^2\)=0

\(\Leftrightarrow\)A=3B hoặc B=-3A

Nếu A=3B ta có d:3x+y-5=0

Nếu B=-3A to có d:x-3y-5=0

Vậy......

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

NV
26 tháng 3 2022

Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của đường thẳng d' cần tìm

Do d' tạo với d 1 góc bằng 45 độ

\(\Rightarrow cos\left(d;d'\right)=\dfrac{\left|2a+3b\right|}{\sqrt{2^2+3^2}.\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}\left|2a+3b\right|=\sqrt{13\left(a^2+b^2\right)}\)

\(\Leftrightarrow2\left(2a+3b\right)^2=13\left(a^2+b^2\right)\)

\(\Leftrightarrow5a^2-5b^2-24ab=0\)

\(\Rightarrow\left[{}\begin{matrix}a=5b\\b=-5a\end{matrix}\right.\) \(\Rightarrow\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(5;1\right)\\\left(a;b\right)=\left(1;-5\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}5\left(x-3\right)+1\left(y-6\right)=0\\1\left(x-3\right)-5\left(y-6\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)

Chọn B