K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Vẽ đoạn thẳng AD.

∆ADB và ∆DAC có:

ˆA1A1^= ˆD1D1^(so le trong AB//CD)

AD là cạnh chung.

A2^=D2^(So le trong, AC//BD)

Do đó ∆ADB=∆DAC(g.c .g)

Suy ra: AB=CD, BD=AC



Xem thêm tại: http://loigiaihay.com/bai-38-trang-124-sach-giao-khoa-toan-7-tap-1-c42a5073.html#ixzz4elm8F0eT

6 tháng 8 2017

A B C D

Vẽ đoạn thẳng AD.

∆ADB và ∆DAC có:

\(\widehat{A^1}\)= \(\widehat{D^1}\)(so le trong AB//CD)

AD là cạnh chung.

\(\widehat{A^2}\)=\(\widehat{D^2}\)(So le trong, AC//BD)

Do đó ∆ADB=∆DAC(g.c .g)

Suy ra: AB=CD, BD=AC



12 tháng 10 2017

đây là cậu chép trg chỗ giải đáp rồi mà mk ko đc lm giống trg giải đáp

23 tháng 10 2017

bài giải

20 tháng 4 2017

Giải bài 52 trang 101 Toán 7 Tập 1 | Giải bài tập Toán 7

20 tháng 4 2017

GT Hai góc đối đỉnh

KL bằng nhau

20 tháng 4 2017

a) Xét \(\Delta ADE;\Delta BDE:\)

AD = BD (gt)

ED chung

AE = BE (gt)

\(\Rightarrow\Delta ADE=\Delta BDE\left(c.c.c\right)\)

b) Vì \(\Delta ADE=\Delta BDE\) (câu a)

nên \(\widehat{DAE}=\widehat{DBE}\) (2 góc t/ư).

20 tháng 4 2017

Xem hình vẽ:

a) ∆ADE và ∆BDE có

DE cạnh chung

AD=DB(gt)

AE=BE(gt)

Vậy ∆ADE=∆BDE(c.c.c)

b) Từ ∆ADE=∆BDE(cmt)

Suy ra \(\widehat{DAE}\)=\(\widehat{DBE}\)(Hai góc tương ứng)


13 tháng 5 2017

Xét tam giác IAC và IBD có:

IA = IB ( theo đề bài)

Góc AIC = góc BID ( 2 góc đối đỉnh)

IC = ID ( theo đề bài )

Do đó: tam giác IAC = tam giác IBD (c.g.c)

Suy ra góc ACI = góc BDI ( 2 góc tương ứng) \(\left(1\right)\)

Suy ra góc IAC = IBD ( 2góc tương ứng) (*)

Có I nằm giữa B và C

Suy ra: BI + CI = BC (2)

Có I nằm giữa A và D

Suy ra: AI + DI = AD (3)

Từ 2 và 3 suy ra: BC = AD (4)

Có góc OAI + góc IAC = \(180^0\)(2 góc kề bù)

góc OBI + góc IBD = \(180^0\)(2 góc kề bù)

mà: góc IAC = góc IBD (*)

Suy ra góc: OAI = góc OBI (5)

Xét tam giác: OAD và tam giác OBC có:

góc ACI = góc BDI (1)

AD = BC (4)

góc OAI = góc OBI (5)

Do đó: tam giác OAD = tam giác OBC (g.c.g)

Suy ra: OA = OB (2 cạnh tương ứng)

Xét tam giác IAC và tam giác IBD có:

IA = IB ( gt)

Góc AIC = góc BID ( 2 góc đối đỉnh)

IC = ID ( gt )

=> Tam giác IAC = tam giác IBD (c.g.c)

=> Góc ACI = góc BDI ( 2 góc tương ứng) (1)

và góc IAC = IBD ( 2góc tương ứng) (*)

Có I nằm giữa B và C

Suy ra: BI + CI = BC (2)

Có I nằm giữa A và D

Suy ra: AI + DI = AD (3)

Từ 2 và 3 suy ra: BC = AD (4)

Có góc OAI + góc IAC = 1800 (2 góc kề bù)

góc OBI + góc IBD = 1800 (2 góc kề bù)

mà: góc IAC = góc IBD (*)

=> góc: OAI = góc OBI (5)

Xét tam giác OAD và tam giác OBC có:

góc ACI = góc BDI (1)

AD = BC (4)

góc OAI = góc OBI (5)

=> Tam giác OAD = tam giác OBC (g.c.g)

=> OA = OB (2 cạnh tương ứng)

19 tháng 4 2017

a) Từ hình vẽ ta có: LP ⊥ MN; MQ ⊥ LN

ΔMNL có S là giao điểm của hai đường cao LP và MQ nên S chính là trực tâm của tam giác (định lí ba đường cao).

=> NS cũng là đường cao trong tam giác hay NS ⊥ LM (đpcm).

b) ΔNMQ vuông tại Q có góc LNP = 50o nên góc QMN = 40o

ΔMPS vuông tại P có góc QMP = 40o nên góc MSP = 50o

Vì hai góc MSP và PSQ là hai góc kề bù nên suy ra:

góc PSQ = 180o - 50o = 130o.

19 tháng 4 2017

Hướng dẫn:

a) Trong ∆NML có :

LP ⊥ MN nên LP là đường cao

MQ ⊥ NL nên MQ là đường cao

mà PL ∩ MQ = {S}

suy ra S là trực tâm của tam giác nên đường thằng SN chứa đường cao từ N hay

SN ⊥ ML

b) ∆NMQ vuông tại Q có ˆLNPLNP^ =500 nên ˆQMNQMN^ =400

∆MPS vuông tại Q có ˆQMPQMP^ =400 nên ˆMSPMSP^ =500

Suy ra ˆPSQPSQ^ =1300(kề bù)

19 tháng 4 2017

Hướng dẫn:

Từ hình vẽ ta có:

DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)

=> ˆADK=ˆCDKADK^=CDK^

hay DK là phân giác ˆADCADC^

=> ˆADKADK^ = 1212ˆADCADC^

∆ADI = ∆BDI (c.c.c)

=> ˆADI=ˆBDIADI^=BDI^

=> DI là phân giác ˆADBADB^

=> ˆADIADI^ = 1212 ˆADBADB^

Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC

=> DK ⊥ DI

hay ˆADKADK^ + ˆADIADI^ = 900

Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900

=> ˆADCADC^ + ˆADBADB^ = 1800

19 tháng 4 2017

Từ hình vẽ ta có:

DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)

=> ˆADK=ˆCDKADK^=CDK^

hay DK là phân giác ˆADCADC^

=> ˆADKADK^ = 1212ˆADCADC^

∆ADI = ∆BDI (c.c.c)

=> ˆADI=ˆBDIADI^=BDI^

=> DI là phân giác ˆADBADB^

=> ˆADIADI^ = 1212 ˆADBADB^

Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC

=> DK ⊥ DI

hay ˆADKADK^ + ˆADIADI^ = 900

Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900

=> ˆADCADC^ + ˆADBADB^ = 1800