Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D M E N K Từ N kẻ NK song song với EB cắt AB tại K (hình vẽ)
Vì NE // BK, NK// EB nên NE = BK, NK = EB (tính chất đoạn chắn) \(\Rightarrow\) NK = CD (vì CD = EB)
Vì NK // EB nên \(\left\{{}\begin{matrix}\widehat{ANK}=\widehat{MCD}\\\widehat{AKN}=\widehat{ABC}\end{matrix}\right.\) (đồng vị)
Mà MD // AB nên \(\widehat{MDC}=\widehat{ABC}\)
\(\Rightarrow\widehat{AKN}=\widehat{MDC}\)
\(\Delta ANK\) và \(\Delta MCD\) có: \(\left\{{}\begin{matrix}\widehat{ANK}=\widehat{MCD}\\NK=CD\\\widehat{AKN}=\widehat{MDC}\end{matrix}\right.\)
\(\Rightarrow\Delta ANK=\Delta MCD\)(g.c.g)
\(\Rightarrow AK=MD\) (2 cạnh tương ứng)
Vì AK = MD, NE = BK nên AK + BK = MD + NE
\(\Rightarrow\) AB= MD + NE (ĐPCM)
Nếu bạn chưa biết tính chất đoạn chắn thì bạn lên mạng tìm hiểu thêm nha.
qua N kẻ đường thẳng song song với AB cắt BC tại K .
Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)
nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC
Suy ra DM+EN=BK+CK=BC(dpcm)
A B C M N D E
Xét\(\Delta\)ABC có: NE //BC; BD //BC
=> \(\frac{AN}{AB}=\frac{NE}{BC}\) và \(\frac{AM}{AB}=\frac{MD}{BC}\)
=> \(\frac{MD}{BC}+\frac{NE}{BC}=\frac{AM}{AB}+\frac{AN}{AB}\)
=> \(\frac{MD+NE}{BC}=\frac{AM+AN}{AB}=\frac{NB+AN}{AB}=\frac{AB}{AB}=1\)
=> MD + NE = BC
Từ N kẻ đường thẳng song song với AB cắt BC tại K. Nối EK.
Xét ∆BEK và ∆NKE, ta có:
ˆEKB=ˆKENEKB^=KEN^ (so le trong vì EN // BC)
EK cạnh chung
ˆBEK=ˆNKEBEK^=NKE^ (so le trong vì NK // AB)
Suy ra: ∆BEK = ∆NKE (g.c.g)
Suy ra: BE = NK (hai cạnh tương ứng)
EN = BK (hai cạnh tương ứng)
Xét ∆ADM và ∆NKC, ta có:
ˆA=ˆKNCA^=KNC^ (đồng vị vì NK // AB)
AD = NK (vì cùng bằng BE)
ˆADM=ˆNKCADM^=NKC^ (vì cùng bằng ˆBB^)
Suy ra: ∆ADM = ∆NKC (c.g.c)
=>DM = KC (hai cạnh tương ứng)
Mà BC = BK + KC. Suy ra: BC = EN + DM
1)Các đường thẳng EM và MD cắt AB và AC lần lượt là K và H.
Kẻ đường thẳng EM,Ta có Vì EC//KM ta có HAMˆHAM^=AMEˆAME^(1)
Vì AB//MD=>KAMˆKAM^=AMDˆAMD^(2)
Mà BACˆBAC^=KAMˆKAM^+HAMˆHAM^(3)
tiếp KMDˆKMD^=KMAˆKMA^+AMDˆAMD^(4)
Từ (1),(2),(3) và (4)=>BACˆBAC^=EMDˆEMD^
Kẻ D với B.Xét tam giác ABD và tam giác MDB có:
DB là cạnh chung
MDBˆMDB^=DBAˆDBA^(vì MD//AB)
ADBˆADB^=DBMˆDBM^(vì xy//BC)
=>Tam giác ABD=Tam giác MDB(g.c.g)
=>DM=AB.
Kẻ E với C.Xét tam giác AEM và tam giác MCA có:
AM là cạnh chung
ACEˆACE^=CAMˆCAM^)(vì ME//AC)
EAMˆEAM^=AMCˆAMC^(vì xy//BC)
=>Tam giác AEM=Tam giác MCA(g.c.g)
=>ME=AC
Xét tam giác ABC và tam giác MDE có:
DM=AB(c/m trên)
ME=AC(c/m trên)
BACˆBAC^=EMDˆEMD^
=>Tam giác ABC=Tam giác MDE(c.g.c)
2)Thiếu điều kiện rồi.
Bài 6 mình sẽ bắt đầu bằng câu b nhé!
b)Vì MACˆMAC^+BAMˆBAM^=90o90o(gt)
Vì MACˆMAC^+CAEˆCAE^=90o90o(gt)
Từ trên=>CAEˆCAE^= BAMˆBAM^
Xét tam giác ABM và tam giác ACE có:
AB=BC(gt)
AM=AE(gt)
CAEˆCAE^= BAMˆBAM^(c/m trên)
=>Tam giác ABM=Tam giác ACE(c.g.c)
=>EC=BM(hai cạnh tương ứng)
c)Ta có: MABˆMAB^+MACˆMAC^=90o90o(gt)
Ta lại có tiếp: MABˆMAB^+BADˆBAD^=90o90o(gt)
=>BADˆBAD^=MACˆMAC^
Xét tam giác ADB và tam giác AMC có:
AB=AC(gt)
DA=AM(gt)
BADˆBAD^=MACˆMAC^(c/m trên)
=>Tam giác ADB=Tam giác AMC(c.g.c)
=>DB=MC(hai cạnh tương ứng)
Ta có BM+MC=BC(do M nằm giữa B và C)
Mà BM=EC(c/m trên)
DB=MC(c/m trên)
=>EC+DB=BC
d)Vì Tam giác ABM=Tam giác ACE(c/m trên)
=>ACEˆACE^=B^B^=45o45o(Vì góc B là góc ở đáy của tam giác vuông cân BAC tại A)
Vậy Ta có C^C^+ACEˆACE^=BCEˆBCE^=90o90o.(1)
Vì Tam giác ADB=Tam giác AMC(c/m trên)
=>C^C^=DBAˆDBA^=45o45o
Vậy B^B^+DBAˆDBA^=DBCˆDBC^=90o90o(2)
Từ (1) và (2)=>BCEˆBCE^= DBCˆDBC^=90o90o vậy BCEˆBCE^+DBCˆDBC^=180o180o mà hai góc này nằm ở vị trí trong cùng phía =>DB//EC