Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác APMN có
NM//AP
MP//AN
Do đó: APMN là hình bình hành
mà \(\widehat{NAP}=90^0\)
nên APMN là hình chữ nhật
A B C M N
a)Xét tứ giác BMNC có:
góc ABC= góc ACB ( góc đáy tam giác cân)
MN song song BC
==> tg BMNC là hình thang cân
b) xét 2 tam giác MNB và MNC có:
góc MNB = góc NBC ( sole trong)
BC là cạnh chung
góc NMC = góc MCB ( sole trong)
=> tam giác MNB= tam giác NMC ( g-c-g)
nên: S MNB = S MNC
c) Xét tam giác ABN và tam giác ACM
AB=AC( cạnh tam giác cân)
góc A chung
MC = NB ( 2 chéo hình thang cân)
=> tam giác ABN = tam giác ACM (c-g-c)
Nên: S ABN= S ACM
a) gócm=gócb =gócc=gócn mn // bc
b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf
c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn
A B C D M E F K H S I J
a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có:
\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).
b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:
Gọi MS cắt EH và KF lần lượt ở I và J.
Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF
Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF
Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.
c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH
Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).
1,Ta có :
DM // BC , EN // BC \(\Rightarrow\) DM // EN
Vì AD = DE và DM // EN
\(\Rightarrow\) DM là đường trung bình của tam giác AEN
\(\Rightarrow AM=MN\) (1)
\(\Rightarrow\) M là trung điểm của AN
2 , Xét hình thang DMCB
\(DE=EB\) và EN // BC
\(\Rightarrow\) EN là đường trung bình của hình thang DMCD
\(\Rightarrow MN=NC\) (2)
Từ (1) và (2) \(\Rightarrow AM=MN=NC\)
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc
A B C M N P E F H K
Gọi PH và NF là 2 đường cao của \(\Delta\)BNP; CK và AE lần lượt là đường cao của \(\Delta\)CMP và \(\Delta\)AMN
Xét tứ giác BNMP có: BN // MP; MN // BP => Tứ giác BNMP là hình bình hành
=> MP = BN; MN = BP
Ta có: \(S_{CMP}=\frac{CK.MP}{2};S_{BNP}=\frac{PH.BN}{2}\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CK}{PH}\)(Do MP = BN) (1)
MP // BN => ^MPC = ^NBC (Đồng vị) Hay ^KPC = ^HBP.
Xét \(\Delta\)CKP và \(\Delta\)PHB có: ^CKP = ^PHB (=900); ^KPC = ^HBP
=> \(\Delta\)CKP ~ \(\Delta\)PHB (g.g)\(\Rightarrow\frac{CK}{PH}=\frac{CP}{PB}\) (2)
Từ (1) và (2) => \(\frac{S_{CMP}}{S_{BNP}}=\frac{CP}{PB}\). Mà \(\frac{CP}{PB}=\frac{CM}{MA}\)(ĐL Thales) \(\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CM}{MA}\)(*)
Tương tự: \(\frac{S_{BNP}}{S_{AMN}}=\frac{NF}{AE}\). \(\Delta\)AEN ~ \(\Delta\)NFB (g.g) => \(\frac{NF}{AE}=\frac{BN}{NA}\)
\(\Rightarrow\frac{S_{BNP}}{S_{AMN}}=\frac{BN}{NA}=\frac{CM}{MA}\)(ĐL Thales) (**)
Từ (*) và (**) suy ra \(\frac{S_{CMP}}{S_{BNP}}=\frac{S_{BNP}}{S_{AMN}}\Rightarrow\left(S_{BNP}\right)^2=S_{AMN}.S_{CMP}\) (đpcm).