Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
Từ dữ kiện thứ hai, ta thấy 4 số có cùng số dư khi chia cho 3 nên tổng nhỏ nhất là \(1+7+13+19=40\) (giữ lại đáp án ban đầu nhé)
Từ dữ kiện thứ nhất ta thấy hoặc cả 4 số đều lẻ, hoặc cả 4 số đều chẵn.
Từ dữ kiện thứ 2 ta thấy cả 4 số đều phải chia hết cho 3.
Suy ra tổng nhỏ nhất của 4 số là \(1+7+13+19=40\)
a: Gọi hai số cần tìm là 2k;2k+2
Theo đề, ta có:
\(\left(2k+2\right)^3-8k^3=2012\)
\(\Leftrightarrow24k^2+24k+8=2012\)
\(\Leftrightarrow24k^2+24k-2004=0\)
\(\Leftrightarrow2k^2+2k-167=0\)
=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên
d: \(a^3+b=14\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)
=>ab=-1
\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)
\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)
\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)
\(\Leftrightarrow a^5+b^5=54\)
Tổng 3 số là 4+172+283=459
Bài này viết PT ra là xong
Ta có: \(\hept{\begin{cases}\left(a+b\right)-c=4\\\left(b+c\right)-a=172\\\left(a+c\right)-b=283\end{cases}\Rightarrow2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=4+172+283=459}\)