Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số lẻ liên tiếp lần lượt là 2a+1,2a+3,2a+5 (a thuộc N)
Xét (2a+1)^2 + (2a+3)^2 + (2a+5)^2
= 4a^2+4a+1+4a^2+12a+9+4a^2+20a+25
=12a^2+36a+35
=3.(4a^2+12a+11) + 2 : 3 dư 2 ko chính phương
=>ĐPCM
Gọi 2 số chính phương liên tiếp đó là n2 ; (n+1)2
ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)
Không đúng: VD: 25;36 : 25+36 +25.36=71+900 =971 không là số chính phương
Gọi hai số chính phương liên tiếp là k2 và (k+1)2
Ta có:
k2 + (k+1)2 + k2(k+1)2
= k2 + k2 + 2k + 1 +k4 + 2k3 + k2
= k4 + 2k3 + 3k2 + 2k + 1
= (k2+k+1)2
= [k(k+1)+1]2 là số chính phương lẻ.
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
Gọi số lẻ liên tiếp là 2k+1,2k+3
Ta có: \(\left(2k+1\right)^2+\left(2k+3\right)^2=4k^2+4k+1+4k^2+12k+9=8k^2+16k+10\)
\(=8\left(k^2+2k+1\right)+2=8\left(k+1\right)^2+2\)
Vì: \(8\left(k+1\right)^2⋮2;2⋮2\Rightarrow8\left(k+1\right)^2+2⋮2\left(1\right)\)
Mà \(8\left(k+1\right)^2⋮4,2⋮̸4\Rightarrow8\left(k+1\right)^2+2⋮4̸\) (2)
Từ (1) và (2) => 8(k+1)2+2 không phải là số chính phương
Vậy...
P/s: theo tính chất số chính phương thì nếu số chính phương chia hết cho 2 thì chia hết cho 4