\(\left(x-3\right)^2+\left(x-2\right)^2+\left|x-1\right|+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

Ta thấy (x-3)2,(x-2)2+|x-1| luôn luôn dương,x dương hoặc âm 

  • Xét x lẻ

=>(x-3)2 luôn chẵn;  (x-2)2 luôn lẻ;  |x-1| luôn chẵn; x lẻ (theo giả thiết 1)

=>(chẵn +chẵn )+(lẻ +lẻ)

=chẵn + chẵn 

=chẵn chia hết 2.Mà 2013 ko chia hết 2

=>vô nghiệm (1)

  • Xét x chẵn 

=>(x-3)2 luôn lẻ; (x-2)2 luôn chẵn; |x-1| luôn lẻ; x chẵn (theo giả thiết 2)

=>(lẻ + lẻ )+(chẵn +chẵn)

=chẵn + chẵn 

= chẵn cũng chia hết 2.Mà  2013 ko chia hết 2

=>vô nghiệm (2)

Từ (1) và (2) =>pt trên vô nghiệm vs mọi x

6 tháng 6 2016

ko tồn tại nhé bn 

cái đó là zĩ nhiên

vì từ đầu bài

nen x=y=z

22 tháng 8 2019

Trong 3 số x, y, z theo đề bài không có số lớn nhất => không có số nhỏ nhất => x=y=z

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)

6 tháng 11 2016

Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)

\(\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)

Ta có :

4(x - y)(y - z) = 4(2013k - 2014k)(2014k - 2015k) 

                    =4.(-k).(-k) = 4k2  (1)

(z - x)2 = (2015k - 2013k)2 = (2k)2 = 4k2  (2)

Từ 1 và 2 

=> 4(x - y)(y - z) = (z - x)2

4 tháng 9 2016

Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ

Tương tự: y, z cũng là số lẻ

Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)

Nên : x3 + xyz là số chẵn ( trái với đề bài)

Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0