K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tôi là giáo viên gia sư Toán cấp 1-2-3. Tôi có học trò lớp 6 hỏi bài toán như sau: Tìm số tự nhiên nhỏ hơn 500, biết rằng khi chia 8, 10, 15, 20 có số dư theo thứ tự là 5, 7, 12, 17 và chia hết cho 51.

Tôi đã giải như sau:

Gọi a là số tự nhiên cần tìm, thương a chia cho 8, 10, 15, 20 lần lượt là b, c, d, e.

Ta có đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17

Suy ra B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17

Suy ra B(10) – B(8) = 2; B(15) – B(10) = 5; B(20) – B(15) = 5.

B(8) = {0; 8; 16; 30; 40;48; 56; 64; 72; 80; 88; 96; 104; 112; 120…}

B(10) = {0; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140; 150; 160;…}

B(15) = {0; 15; 30; 45; 60; 75; 90; 105; 120; 135; 150; 165; …}

B(20) = {0; 20; 40; 60; 80; 100; 120; 140; 160; 180; 200; 220; 240; 260;…}

Để có B(10) – B(8) = 2 ta tìm được cặp 10 – 8; 90 – 88, …

Để có B(15) – B(10) = 5 ta tìm được cặp 15 – 10; 105 – 100, …

Để có B(20) – B(15) = 5 ta tìm được cặp 20 – 15; 80 – 75; 140-135, …

Tuy nhiên để cùng thỏa mãn B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17 thì ta chọn ở B(8) số 8, ở B(10) số 10, ở B(15) số 15, ở B(20) số 20. Điều này có nghĩa là

8 – 5 = 10 – 7 = 15 – 12 = 20 – 17 = 3.

Con số 3 này gợi ý cho ta cộng thêm vào đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17 hai vế với 3 ta có: a + 3 = 8b + 5 + 3 = 10c + 7 + 3 = 15d + 12 + 3 = 20e + 17 + 3

Suy ra: a + 3 = 8(b + 1) = 10(c + 1) = 15(d + 1) = 20(e + 1)

Suy ra a + 3 chia hết cho 8, 10, 15, 20.

BCNN(8, 10, 15, 20) = 23.3.5 = 120

Suy ra a + 3 thuộc BC(120) = {0; 120; 240; 360; 480; 600; 720;… }

Suy ra a thuộc {-3; 117; 237; 357; 477; 597; 717;…}

Để a nhỏ hơn 500 suy ra a thuộc {-3; 117; 237; 357; 477}

Để a chia hết cho 51 thì chỉ có a = 357 là thỏa mãn.

Vậy số tự nhiên a nhỏ hơn 500 thỏa mãn điều kiện của bài toán là 357.

2
20 tháng 3 2016

Ui thầy giỏi ghê ha! Thán phục! Thán phục????????

17 tháng 9 2020

chuẩn

cái này dễ mak bn ơi,bn đăng

từng bài một mn sẽ giải chứ

bn đăng như này chưa chắc

đã cs ng giải cho bn

75 + 58.50 – 58.2520 : 22 – 59 : 58(519 : 517 – 4) : 784 : 4 + 39 : 37295 – (31 – 22.5)21125 : 1123 – 35 : (110 + 23) – 60.29 – [16 + 3.(51 – 49)]47 – (45.24– 52.12) : 14102– 60 : (56 : 54 – 3.5)2345 – 1000 : [19 – 2(21 – 18)2]1205 – [1200 – (42– 2.3)3: 40]500 – {5[409 – (23.3 – 21)2] + 103} : 15967 – [8 + 2.32– 24 : 6 + (9 – 7)3].5Bài 2. Trong các số 2540; 1347; 1638; 2356 ; số nào chia hết cho 2? Số nào chia hết cho 3? Số nào...
Đọc tiếp

75 + 58.50 – 58.25

20 : 22 – 59 : 58

(519 : 517 – 4) : 7

84 : 4 + 39 : 37

295 – (31 – 22.5)2

1125 : 1123 – 35 : (110 + 23) – 60.

29 – [16 + 3.(51 – 49)]

47 – (45.24– 52.12) : 14

102– 60 : (56 : 54 – 3.5)

2345 – 1000 : [19 – 2(21 – 18)2]

1205 – [1200 – (42– 2.3)3: 40]

500 – {5[409 – (23.3 – 21)2] + 103} : 15

967 – [8 + 2.32– 24 : 6 + (9 – 7)3].5

Bài 2. Trong các số 2540; 1347; 1638; 2356 ; số nào chia hết cho 2? Số nào chia hết cho 3? Số nào chia hết cho cả 2 và 3.

Bài 3. Điền chữ số vào dấu * để :

a. 423* chia hết cho 3 và 5.

b. 613* chia hết cho2 và 9.

Bài 4. Tìm UCLN và BCNN của.

a. 24 và 10

b. 30 và 28

c. 150 và 84

d. 11 và 15

e. 30 và 90

f. 140 ; 210 và 56

g. 105 ; 84 và 30.

h. 14 ; 82 và 124

i. 24 ; 36 và 160

j. 200 ; 125 và 75.

Bài 5. Tìm số tự nhiên x biết.

a. 36 và 36 cùng chia hết cho x và x lớn nhất.

b. 60, 84, 120 cùng chia hết cho x và x 6

c. 91 và 26 cùng chia hết cho x và 10 < x < 30.

d. 70 và 84 cùng chia hết cho x – 2 và x > 8.

e. 150, 84 và 30 đều chia hết cho x – 1 và 0 < x < 16.

Bài 6. Tìm số tự nhiên x biết.

a. x chia hết cho 16 ; 24 ; 36 và x là số nhỏ nhất khác 0.

b. x chia hết cho 30 ; 40 ; 50 và x là số nhỏ nhất khác 0.

c. x chia hết cho 36 ; 48 ; 60 và x là số nhỏ nhất khác 0.

d. x là bội chung của 18 ; 30 ; 75 và 0 x < 1000.

e. x + 2 chia hết cho 10 ; 15 ; 25 và x < 500.

f. x – 2 chia hết cho 15 ; 14 ; 20 và 400 x

Bài 7. Tìm số tự nhiên x, biết.

a. 35 chia hết cho x + 3.

b. 10 chia hết cho (2x + 1).

c. x + 7 chia hết cho 25 và x < 100.

d. x + 13 chia hết cho x + 1.

e. 2x + 108 chia hết cho 2x + 3.

3
6 tháng 11 2019

bạn lấy đề ở đâu vậy mà sao giống mình quá zợ

9 tháng 11 2021

bạn ơi bạn tự làm đi dễ mỗi tội dài thôi

a) A={x=3n|\(n\in N;0\le n\le5\)}

b) B={x=5n|\(n\in N;0< n< 7\)}

c) C={x=10n|\(n\in N;1\le n\le9\)}

d) D={x=4n+1|\(n\in N;0\le n\le4\)}

6 tháng 8 2021

a)A={xEN/x<16}

b)B={xEN/chia hết cho 5,x<31}

c)C={xEN/chia hết cho 10,x<91}

d)D={xEN/chia cho 4 dư 1,x<18}vui

14 tháng 8 2017

Ai giúp mình với

16 tháng 1 2018

toán lớp mấy đấy

6 tháng 9 2021

a) A = {0; 3; 6; 9; 12; 15};

Ta thấy các số 0; 3; 6; 9; 12; 15 là các số tự nhiên chia hết cho 3 và nhỏ hơn 16 nên ta viết tập hợp A bằng cách chỉ ra tính chất đặc trưng là:

A = {x | x là số tự nhiên chia hết cho 3, x < 16}.

b) B = {5; 10; 15; 20; 25; 30};

Ta thấy các số 5; 10; 15; 20; 25; 30 là các số tự nhiên chia hết cho 5, lớn hơn 0 và nhỏ hơn 31 (hoặc ta có thể viết nhỏ hơn 32; …; 35).

c) C = {10; 20; 30; 40; 50; 60; 70; 80; 90};

Ta thấy các số 10; 20; 30; 40; 50; 60; 70; 80; 90 là các số tự nhiên chia hết cho 10, lớn hơn 0 và nhỏ hơn 100 (hoặc ta có thể viết nhỏ hơn 91; …; 99).

Vậy ta có thể viết tập hợp C bằng các cách sau:

d) D = {1; 5; 9; 13; 17}

Ta thấy các số 1; 5; 9; 13; 17 là các số tự nhiên thỏa mãn số sau hơn số trước 4 đơn vị (hay còn gọi là hơn kém nhau 4 đơn vị), lớn hơn 0 và nhỏ hơn 18.

Do đó ta viết tập hợp D là:

D = {x | x là các số tự nhiên hơn kém nhau 4 đơn vị, 0 < x < 18}.

\(A=\left\{x\in N\left|x\le15\right|x⋮3\right\}\)

\(B=\left\{x\inℕ^∗\left|x\le30\right|x⋮5\right\}\)

\(C=\left\{x\inℕ^∗\left|x< 100\right|x⋮10\right\}\)

\(D=\left\{x\inℕ^∗\left|x< 18\right|x⋮4+1\right\}\)

17 tháng 12 2016

Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )

Theo đề ra , ta có :

a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)

a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)

a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)

a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)

\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)

Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)

\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)

\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)

\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)

Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)

Vậy số tự nhiên cần tìm là 117

17 tháng 12 2016

Gọi số cần tìm là a

Ta có a : 8 dư 5 => a + 3 ⋮ 8

a : 10 dư 7 => a + 3 ⋮ 10

a : 15 dư 12 => a + 3 ⋮ 15

a : 20 dư 17 => a + 3 ⋮ 20

=>a + 3\(\in\) BC(8,10,15,20)

8 = 23

10 = 2.5

15 = 3.5

20 = 22.5

BCNN(8,10,15,20) = 23.3.5 = 120

=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}

=> a \(\in\) {-3;117;237;...}

Vì a nhỏ nhất nên a = 117

Bài 2

a) ta gọi các số thuộc ƯC(16;24) là A ta có

\(A\in\left\{1;2;4;8\right\}\)

b)ta gọi các số thuộc ƯC(60;90) là B ta có

\(B\in\left\{1;2;3;5;6;10;15;30\right\}\)

Bài 3

a) gọi các số thuộc BC (13;15) là A

\(A\in\left\{195;390;585;780;...\right\}\)

b)gọi các số thuộc BC (10;12,15) là B

\(B\in\left\{60;120;180;240;300;...\right\}\)

bài 4

a)10=2.5

28=22.7

=> ƯCLN(10;28)=22.5.7=140

b) ƯCLN =16 vì 80 chia hết cho 16 , 176 chia hết cho 16

a)bài 5

16= 24

24=23.3

BCNN = 24.3=48

b)8=23

10=2.5

20=22.5

BCNN(8;10;20)=23.5=40

c)8=23

9=32

11=11

BCNN(8;9;11)=23.32.11

Bài toán 1: Viết các tập hợp sau.a) Ư(6); Ư(9); Ư(12)       d) B(23); B(10); B(8)b) Ư(7); Ư(18); Ư(10)      e) B(3); B(12); B(9)c) Ư(15); Ư(16); Ư(250    g) B(18); B(20); B(14)Bài toán 2: Phân tích các thừa số sau thành tích các thừa số nguyên tố.a) 27 ; 30 ; 80 ; 20 ; 120 ; 90.   c) 16 ; 48 ; 98 ; 36 ; 124.b ) 15 ; 100 ; 112 ; 224 ; 184.    d) 56 ; 72 ; 45 ; 54 ; 177.Bài toán 3: Tìm UCLN.a) ƯCLN (10 ; 28)         e)...
Đọc tiếp

Bài toán 1: Viết các tập hợp sau.

a) Ư(6); Ư(9); Ư(12)       d) B(23); B(10); B(8)

b) Ư(7); Ư(18); Ư(10)      e) B(3); B(12); B(9)

c) Ư(15); Ư(16); Ư(250    g) B(18); B(20); B(14)

Bài toán 2: Phân tích các thừa số sau thành tích các thừa số nguyên tố.

a) 27 ; 30 ; 80 ; 20 ; 120 ; 90.   c) 16 ; 48 ; 98 ; 36 ; 124.

b ) 15 ; 100 ; 112 ; 224 ; 184.    d) 56 ; 72 ; 45 ; 54 ; 177.

Bài toán 3: Tìm UCLN.

a) ƯCLN (10 ; 28)         e) ƯCLN (24 ; 84 ; 180)

b) ƯCLN (24 ; 36)         g) ƯCLN (56 ; 140)

c) ƯCLN (16 ; 80 ; 176)    h) ƯCLC (12 ; 14 ; 8 ; 20)

d) ƯCLN (6 ; 8 ; 18)       k) ƯCLN (7 ; 9 ; 12 ; 21)

Bài toán 4: Tìm ƯC.

a) ƯC(16 ; 24)           e) ƯC(18 ; 77)

b) ƯC(60 ; 90)          g) ƯC(18 ; 90)

c) ƯC(24 ; 84)          h) ƯC(18 ; 30 ; 42)

d) ƯC(16 ; 60)          k) ƯC(26 ; 39 ; 48)

Bài toán 5: Tìm BCNN của.

a) BCNN( 8 ; 10 ; 20)    f) BCNN(56 ; 70 ; 126)

b) BCNN(16 ; 24)       g) BCNN(28 ; 20 ; 30)

c) BCNN(60 ; 140)      h) BCNN(34 ; 32 ; 20)

d) BCNN(8 ; 9 ; 11)      k) BCNN(42 ; 70 ; 52)

e) BCNN(24 ; 40 ; 162)   l) BCNN( 9 ; 10 ; 11)

Bài toán 6: Tìm bội chung (BC) của.

a) BC(13 ; 15)         e) BC(30 ; 105)

b) BC(10 ; 12 ; 15)      g) BC( 84 ; 108)

c) BC(7 ; 9 ; 11)        h) BC(98 ; 72 ; 42)

d) BC(24 ; 40 ; 28)     k) BC(68 ; 208 ; 100)

Bài toán 7: Tìm số tự nhiên x lớn nhất, biết rằng:

a) 420 ⋮ x và 700 ⋮ x         e) 17 ⋮ x; 21 ⋮ x và 51 ⋮ x

b) 48 ⋮ x và 60 ⋮ x           f) 8 ⋮ x; 25 ⋮ x và 40 ⋮ x

c) 105 ⋮ x; 175 ⋮ x và 385 ⋮ x   g) 12 ⋮ x; 15 ⋮ x và 35 ⋮ x

d) 46 ⋮ x; 32 ⋮ x và 56 ⋮ x      h) 50 ⋮ x; 42 ⋮ x và 38 ⋮ x

Bài toán 8: Tìm các số tự nhiên x biết;

a) x ∈ B(8) và x ≤ 30          e) x ⋮ 12 và 50 < x ≤ 72

b) x ∈ B(15) và 15 < x ≤ 90     f) x ⋮ 14 và x < 92

c) x ∈ B(12) và 12 < x < 90     g) x ⋮ 9 và x < 40

d) x ∈ B(5) và x ≤100          h) x ⋮ 12 và 24 ≤ x ≤ 80

Bài toán 9: Tìm các số tự nhiên x biết.

a) x ∈ BC(6; 21; 27) và x ≤ 2000    f) x ∈ BC(5; 7; 8) và x ≤ 500

b) x∈ BC(12; 15; 20) và x ≤ 500    g) x ∈ BC(12; 5; 8) và 60 ≤ x ≤ 240

c) x ∈ BC(5; 10; 25) và x < 400     h) x ∈ BC(3; 4; 5; 10) và x <200

d) x ∈ BC(3; 5; 6; 9) và 150 ≤ x ≤ 250

e) x ∈ BC(16; 21; 25) và x ≤ 400   k) x ∈ BC(7; 14; 21) và x ≤ 210

Bài toán 10: Tìm số tự nhiên x, biết.

a) (x - 1) ∈ BC(4; 5; 6) và x < 400

b) (x - 1) ∈ BC(4; 5;6) và x ⋮ 7 và x < 400

c) (x + 1) ∈ BC(6; 20; 15) và x ≤ 300

d) (x + 2) ∈ BC( 8 : 16 : 24) và x ≤ 250

Bài toán 11: Tìm x N biết.

a) x ⋮ 39 ; x ⋮ 65 ; x ⋮ 91 và 400 < x < 2600

b) x ⋮ 12 ; x ⋮ 21 ; x ⋮ 28 và x < 500

Bài toán 12: Tìm số tự nhiên x lớn nhất sao cho: 13 ; 15 ; 61 chia x đều dư 1.

Bài toán 13: Tìm số tự nhiên x lớn nhất sao cho 44; 86; 65 chia x đều dư 2.

Bài toán 14: Tìm số tự nhiên x, biết 167 chia x dư 17; 235 chia x dư 25.

Bài toán 15: Tìm số tự nhiên x biết khi chia 268 cho x thì dư 18; 390 chia x dư 40.

Bài toán 16: Tìm số tự nhiên x lớn nhất thỏa mãn: 27 chia x dư 3; 38 chia x dư 2 và 49 chia x dư 1.

Bài toán 17: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5; 7; 11 thì được các số dư lần lượt là 3; 4; 6.

Bài toán 18: Học sinh của lớp 6A khi xếp thành hàng 2, hàng 3, hàng 4 hoặc hàng 8 đều vừa đủ. Biết số học sinh của lớp 6A từ 38 đến 60 em. Tính số học sinh lớp 6A.

Đ/S: 48 học sinh

Bài toán 19: Số học sinh của lớp 6A từ 40 đến 50 em. Khi xếp thành hàng 3 hoặc 5 đều dư 2 em. Tính số học sinh lớp 6A.

Đ/S: 47 học sinh

Bài toán 20: Học sinh khối 6 của một trường có từ 200 đến 300 em. Nếu xếp thành hàng 4, hàng 5 hoặc hàng 7 đều dư 1 em. Tìm số học sinh khối 6 của trường đó.

Đ/S: 281 học sinh.

Bài toán 21: Có 96 cái bánh và 84 cái kẹo được chia đều vào mỗi đĩa. Hỏi có thể chia được nhiều nhất thành bao nhiêu đĩa. Khi ấy mỗi đĩa có bao nhiêu cái bánh, bao nhiêu cái kẹo?

Đ/S:

Bài toán 22: Một lớp 6 có 24 nữ và 20 nam được chia thành tổ để số nam và số nữ được chia đều vào tổ. Hỏi chia được nhiều nhất bao nhiêu tổ? Khi ấy tính số nam và số nữ mỗi tổ.

Đ/S: 4 tổ. Mỗi tổ có 6 nữ và 5 nam.

Bài toán 23: Có 60 quyển vở và 42 bút bi được chia thành từng phần. Hỏi có thể chia nhiều nhất được bao nhiêu phần để số vở và số bút bi được chia đều vào mỗi phần? Khi ấy mỗi phần có bao nhiêu vở và bao nhiêu bút bi?

Đ/S: 6 phần. Mỗi phần có 10 vở và 7 bút.

Bài toán 24: Một hình chữ nhật có chiều dài 105 và chiều rộng 75m được chia thành các hình vuông có diện tích bằng nhau. Tính độ dài cạnh hình vuông lớn nhất trong các cách chia trên.

Đ/S: 15m

Bài toán 25: Đội A và đội B cùng phải trồng một số cây bằng nhau. Biết mỗi người đội A phải trồng 8 cây, mỗi người đội B phải trồng 9 cây và số cây mỗi đội phải trồng khoảng từ 100 đến 200 cây. Tìm số cây mà mỗi đôi phải trồng.

Đ/S: 144 cây

Bài toán 26: Một mảnh đất hình chữ nhật có chiều dài 112m và chiều rộng 40m. Người ta muốn chia mảnh đất thành những ô vuông bằng nhau để trồng các loại rau. Hỏi với cách chia nào thì cạnh ô vuông là lớn nhất và bằng bao nhiêu?

Đ/S: 8m

Bài toán 27: Có 133 quyển vở, 80 bút bi, 177 tập giấy. Người ta chia vở, bút bi, giấy thành các phần thưởng bằng nhau, mỗi phần thưởng gồm cả ba loại. Nhưng sau khi chia xong còn thừa 13 quyển vở, 8 bút và 2 tập giấy không đủ chia vào các phần thưởng khác. Tính xem có bao nhiêu phần thưởng.

Đ/S: 3 phần thưởng

Bài toán 28: Một đơn vị bộ đội khi xếp thành mỗi hàng 20 người, 25 người hoặc 30 người đều thừa 15 người. Nếu xếp thành hàng 41 người thì vừa đủ (không có hàng nào thiếu, không có ai ở ngoài). Hỏi đơn vị đó có bao nhiêu người, biết rằng số người của đơn vị chưa đến 1000 người.

Đ/S: 615 người.

Bài toán 29: Số học sinh khối 6 của một trường khoảng từ 300 đến 400 học sinh. Mỗi lần xếp hàng 12, hàng 15, hàng 18 đều vừa đủ không thừa ai. Hỏi trường đó khối 6 có bao nhiêu học sinh.

Đ/S: 360 học sinh.

Bài toán 30: Cô giáo chủ nhiệm muốn chia 128 quyển vở, 48 bút chì và 192 tập giấy thành một số phần thưởng như nhau để trao trong dịp sơ kết học kì một. Hỏi có thể chia được nhiều nhất bao nhiêu phần thưởng, khi đó mỗi phần thưởng có bao nhiêu quyển vở, bao nhiêu bút chì, bao nhiêu tập giấy.

Đ/S: 16 phần. 8 quyển vở, 3 bút chì, 12 tập giấy.

Bài toán 31: Tìm các giá trị nguyên của x để. (toán nâng cao chuyên đề này).

a) 1 ⋮ (x + 7)         e) (2x - 9) ⋮ (x - 5)

b) 4 ⋮ (x - 5)         g) (x2 - x - 1) ⋮ (x - 1)

c) (x +8) ⋮ (x + 7)     h) (x2 - 3x - 5) ⋮ (x - 3)

d) (2x + 16) ⋮ (x + 7)  k) (5x + 2) ⋮ (x + 1)

d) (x - 4) ⋮ (x - 5)     l) (2x2 + 3x + 2) ⋮ (x + 1)

Bài toán 32: với x ∈ Z, chứng minh rằng.

a) [x(x + 1) + 1] không chia hết cho 2

b) (x2 + x + 1) không chia hết cho 2

c) [3.(x2 + 2x) + 1] không chia hết cho 3

d) (3x2 + 6x + 1) không chia hết cho 3.

Bài toán 1: Viết các tập hợp sau.

a) Ư(6); Ư(9); Ư(12)       d) B(23); B(10); B(8)

b) Ư(7); Ư(18); Ư(10)      e) B(3); B(12); B(9)

c) Ư(15); Ư(16); Ư(250    g) B(18); B(20); B(14)

Bài toán 2: Phân tích các thừa số sau thành tích các thừa số nguyên tố.

a) 27 ; 30 ; 80 ; 20 ; 120 ; 90.   c) 16 ; 48 ; 98 ; 36 ; 124.

b ) 15 ; 100 ; 112 ; 224 ; 184.    d) 56 ; 72 ; 45 ; 54 ; 177.

Bài toán 3: Tìm UCLN.

a) ƯCLN (10 ; 28)         e) ƯCLN (24 ; 84 ; 180)

b) ƯCLN (24 ; 36)         g) ƯCLN (56 ; 140)

c) ƯCLN (16 ; 80 ; 176)    h) ƯCLC (12 ; 14 ; 8 ; 20)

d) ƯCLN (6 ; 8 ; 18)       k) ƯCLN (7 ; 9 ; 12 ; 21)

Bài toán 4: Tìm ƯC.

a) ƯC(16 ; 24)           e) ƯC(18 ; 77)

b) ƯC(60 ; 90)          g) ƯC(18 ; 90)

c) ƯC(24 ; 84)          h) ƯC(18 ; 30 ; 42)

d) ƯC(16 ; 60)          k) ƯC(26 ; 39 ; 48)

Bài toán 5: Tìm BCNN của.

a) BCNN( 8 ; 10 ; 20)    f) BCNN(56 ; 70 ; 126)

b) BCNN(16 ; 24)       g) BCNN(28 ; 20 ; 30)

c) BCNN(60 ; 140)      h) BCNN(34 ; 32 ; 20)

d) BCNN(8 ; 9 ; 11)      k) BCNN(42 ; 70 ; 52)

e) BCNN(24 ; 40 ; 162)   l) BCNN( 9 ; 10 ; 11)

Bài toán 6: Tìm bội chung (BC) của.

a) BC(13 ; 15)         e) BC(30 ; 105)

b) BC(10 ; 12 ; 15)      g) BC( 84 ; 108)

c) BC(7 ; 9 ; 11)        h) BC(98 ; 72 ; 42)

d) BC(24 ; 40 ; 28)     k) BC(68 ; 208 ; 100)

Bài toán 7: Tìm số tự nhiên x lớn nhất, biết rằng:

a) 420 ⋮ x và 700 ⋮ x         e) 17 ⋮ x; 21 ⋮ x và 51 ⋮ x

b) 48 ⋮ x và 60 ⋮ x           f) 8 ⋮ x; 25 ⋮ x và 40 ⋮ x

c) 105 ⋮ x; 175 ⋮ x và 385 ⋮ x   g) 12 ⋮ x; 15 ⋮ x và 35 ⋮ x

d) 46 ⋮ x; 32 ⋮ x và 56 ⋮ x      h) 50 ⋮ x; 42 ⋮ x và 38 ⋮ x

Bài toán 8: Tìm các số tự nhiên x biết;

a) x ∈ B(8) và x ≤ 30          e) x ⋮ 12 và 50 < x ≤ 72

b) x ∈ B(15) và 15 < x ≤ 90     f) x ⋮ 14 và x < 92

c) x ∈ B(12) và 12 < x < 90     g) x ⋮ 9 và x < 40

d) x ∈ B(5) và x ≤100          h) x ⋮ 12 và 24 ≤ x ≤ 80

Bài toán 9: Tìm các số tự nhiên x biết.

a) x ∈ BC(6; 21; 27) và x ≤ 2000    f) x ∈ BC(5; 7; 8) và x ≤ 500

b) x∈ BC(12; 15; 20) và x ≤ 500    g) x ∈ BC(12; 5; 8) và 60 ≤ x ≤ 240

c) x ∈ BC(5; 10; 25) và x < 400     h) x ∈ BC(3; 4; 5; 10) và x <200

d) x ∈ BC(3; 5; 6; 9) và 150 ≤ x ≤ 250

e) x ∈ BC(16; 21; 25) và x ≤ 400   k) x ∈ BC(7; 14; 21) và x ≤ 210

Bài toán 10: Tìm số tự nhiên x, biết.

a) (x - 1) ∈ BC(4; 5; 6) và x < 400

b) (x - 1) ∈ BC(4; 5;6) và x ⋮ 7 và x < 400

c) (x + 1) ∈ BC(6; 20; 15) và x ≤ 300

d) (x + 2) ∈ BC( 8 : 16 : 24) và x ≤ 250

Bài toán 11: Tìm x N biết.

a) x ⋮ 39 ; x ⋮ 65 ; x ⋮ 91 và 400 < x < 2600

b) x ⋮ 12 ; x ⋮ 21 ; x ⋮ 28 và x < 500

Bài toán 12: Tìm số tự nhiên x lớn nhất sao cho: 13 ; 15 ; 61 chia x đều dư 1.

Bài toán 13: Tìm số tự nhiên x lớn nhất sao cho 44; 86; 65 chia x đều dư 2.

Bài toán 14: Tìm số tự nhiên x, biết 167 chia x dư 17; 235 chia x dư 25.

Bài toán 15: Tìm số tự nhiên x biết khi chia 268 cho x thì dư 18; 390 chia x dư 40.

Bài toán 16: Tìm số tự nhiên x lớn nhất thỏa mãn: 27 chia x dư 3; 38 chia x dư 2 và 49 chia x dư 1.

Bài toán 17: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5; 7; 11 thì được các số dư lần lượt là 3; 4; 6.

Bài toán 18: Học sinh của lớp 6A khi xếp thành hàng 2, hàng 3, hàng 4 hoặc hàng 8 đều vừa đủ. Biết số học sinh của lớp 6A từ 38 đến 60 em. Tính số học sinh lớp 6A.

Đ/S: 48 học sinh

Bài toán 19: Số học sinh của lớp 6A từ 40 đến 50 em. Khi xếp thành hàng 3 hoặc 5 đều dư 2 em. Tính số học sinh lớp 6A.

Đ/S: 47 học sinh

Bài toán 20: Học sinh khối 6 của một trường có từ 200 đến 300 em. Nếu xếp thành hàng 4, hàng 5 hoặc hàng 7 đều dư 1 em. Tìm số học sinh khối 6 của trường đó.

Đ/S: 281 học sinh.

Bài toán 21: Có 96 cái bánh và 84 cái kẹo được chia đều vào mỗi đĩa. Hỏi có thể chia được nhiều nhất thành bao nhiêu đĩa. Khi ấy mỗi đĩa có bao nhiêu cái bánh, bao nhiêu cái kẹo?

Đ/S:

Bài toán 22: Một lớp 6 có 24 nữ và 20 nam được chia thành tổ để số nam và số nữ được chia đều vào tổ. Hỏi chia được nhiều nhất bao nhiêu tổ? Khi ấy tính số nam và số nữ mỗi tổ.

Đ/S: 4 tổ. Mỗi tổ có 6 nữ và 5 nam.

Bài toán 23: Có 60 quyển vở và 42 bút bi được chia thành từng phần. Hỏi có thể chia nhiều nhất được bao nhiêu phần để số vở và số bút bi được chia đều vào mỗi phần? Khi ấy mỗi phần có bao nhiêu vở và bao nhiêu bút bi?

Đ/S: 6 phần. Mỗi phần có 10 vở và 7 bút.

Bài toán 24: Một hình chữ nhật có chiều dài 105 và chiều rộng 75m được chia thành các hình vuông có diện tích bằng nhau. Tính độ dài cạnh hình vuông lớn nhất trong các cách chia trên.

Đ/S: 15m

Bài toán 25: Đội A và đội B cùng phải trồng một số cây bằng nhau. Biết mỗi người đội A phải trồng 8 cây, mỗi người đội B phải trồng 9 cây và số cây mỗi đội phải trồng khoảng từ 100 đến 200 cây. Tìm số cây mà mỗi đôi phải trồng.

Đ/S: 144 cây

Bài toán 26: Một mảnh đất hình chữ nhật có chiều dài 112m và chiều rộng 40m. Người ta muốn chia mảnh đất thành những ô vuông bằng nhau để trồng các loại rau. Hỏi với cách chia nào thì cạnh ô vuông là lớn nhất và bằng bao nhiêu?

Đ/S: 8m

Bài toán 27: Có 133 quyển vở, 80 bút bi, 177 tập giấy. Người ta chia vở, bút bi, giấy thành các phần thưởng bằng nhau, mỗi phần thưởng gồm cả ba loại. Nhưng sau khi chia xong còn thừa 13 quyển vở, 8 bút và 2 tập giấy không đủ chia vào các phần thưởng khác. Tính xem có bao nhiêu phần thưởng.

Đ/S: 3 phần thưởng

Bài toán 28: Một đơn vị bộ đội khi xếp thành mỗi hàng 20 người, 25 người hoặc 30 người đều thừa 15 người. Nếu xếp thành hàng 41 người thì vừa đủ (không có hàng nào thiếu, không có ai ở ngoài). Hỏi đơn vị đó có bao nhiêu người, biết rằng số người của đơn vị chưa đến 1000 người.

Đ/S: 615 người.

Bài toán 29: Số học sinh khối 6 của một trường khoảng từ 300 đến 400 học sinh. Mỗi lần xếp hàng 12, hàng 15, hàng 18 đều vừa đủ không thừa ai. Hỏi trường đó khối 6 có bao nhiêu học sinh.

Đ/S: 360 học sinh.

Bài toán 30: Cô giáo chủ nhiệm muốn chia 128 quyển vở, 48 bút chì và 192 tập giấy thành một số phần thưởng như nhau để trao trong dịp sơ kết học kì một. Hỏi có thể chia được nhiều nhất bao nhiêu phần thưởng, khi đó mỗi phần thưởng có bao nhiêu quyển vở, bao nhiêu bút chì, bao nhiêu tập giấy.

Đ/S: 16 phần. 8 quyển vở, 3 bút chì, 12 tập giấy.

Bài toán 31: Tìm các giá trị nguyên của x để. (toán nâng cao chuyên đề này).

a) 1 ⋮ (x + 7)         e) (2x - 9) ⋮ (x - 5)

b) 4 ⋮ (x - 5)         g) (x2 - x - 1) ⋮ (x - 1)

c) (x +8) ⋮ (x + 7)     h) (x2 - 3x - 5) ⋮ (x - 3)

d) (2x + 16) ⋮ (x + 7)  k) (5x + 2) ⋮ (x + 1)

d) (x - 4) ⋮ (x - 5)     l) (2x2 + 3x + 2) ⋮ (x + 1)

Bài toán 32: với x ∈ Z, chứng minh rằng.

a) [x(x + 1) + 1] không chia hết cho 2

b) (x2 + x + 1) không chia hết cho 2

c) [3.(x2 + 2x) + 1] không chia hết cho 3

d) (3x2 + 6x + 1) không chia hết cho 3.

Bài toán 1: Viết các tập hợp sau.

a) Ư(6); Ư(9); Ư(12)       d) B(23); B(10); B(8)

b) Ư(7); Ư(18); Ư(10)      e) B(3); B(12); B(9)

c) Ư(15); Ư(16); Ư(250    g) B(18); B(20); B(14)

Bài toán 2: Phân tích các thừa số sau thành tích các thừa số nguyên tố.

a) 27 ; 30 ; 80 ; 20 ; 120 ; 90.   c) 16 ; 48 ; 98 ; 36 ; 124.

b ) 15 ; 100 ; 112 ; 224 ; 184.    d) 56 ; 72 ; 45 ; 54 ; 177.

Bài toán 3: Tìm UCLN.

a) ƯCLN (10 ; 28)         e) ƯCLN (24 ; 84 ; 180)

b) ƯCLN (24 ; 36)         g) ƯCLN (56 ; 140)

c) ƯCLN (16 ; 80 ; 176)    h) ƯCLC (12 ; 14 ; 8 ; 20)

d) ƯCLN (6 ; 8 ; 18)       k) ƯCLN (7 ; 9 ; 12 ; 21)

Bài toán 4: Tìm ƯC.

a) ƯC(16 ; 24)           e) ƯC(18 ; 77)

b) ƯC(60 ; 90)          g) ƯC(18 ; 90)

c) ƯC(24 ; 84)          h) ƯC(18 ; 30 ; 42)

d) ƯC(16 ; 60)          k) ƯC(26 ; 39 ; 48)

Bài toán 5: Tìm BCNN của.

a) BCNN( 8 ; 10 ; 20)    f) BCNN(56 ; 70 ; 126)

b) BCNN(16 ; 24)       g) BCNN(28 ; 20 ; 30)

c) BCNN(60 ; 140)      h) BCNN(34 ; 32 ; 20)

d) BCNN(8 ; 9 ; 11)      k) BCNN(42 ; 70 ; 52)

e) BCNN(24 ; 40 ; 162)   l) BCNN( 9 ; 10 ; 11)

Bài toán 6: Tìm bội chung (BC) của.

a) BC(13 ; 15)         e) BC(30 ; 105)

b) BC(10 ; 12 ; 15)      g) BC( 84 ; 108)

c) BC(7 ; 9 ; 11)        h) BC(98 ; 72 ; 42)

d) BC(24 ; 40 ; 28)     k) BC(68 ; 208 ; 100)

Bài toán 7: Tìm số tự nhiên x lớn nhất, biết rằng:

a) 420 ⋮ x và 700 ⋮ x         e) 17 ⋮ x; 21 ⋮ x và 51 ⋮ x

b) 48 ⋮ x và 60 ⋮ x           f) 8 ⋮ x; 25 ⋮ x và 40 ⋮ x

c) 105 ⋮ x; 175 ⋮ x và 385 ⋮ x   g) 12 ⋮ x; 15 ⋮ x và 35 ⋮ x

d) 46 ⋮ x; 32 ⋮ x và 56 ⋮ x      h) 50 ⋮ x; 42 ⋮ x và 38 ⋮ x

Bài toán 8: Tìm các số tự nhiên x biết;

a) x ∈ B(8) và x ≤ 30          e) x ⋮ 12 và 50 < x ≤ 72

b) x ∈ B(15) và 15 < x ≤ 90     f) x ⋮ 14 và x < 92

c) x ∈ B(12) và 12 < x < 90     g) x ⋮ 9 và x < 40

d) x ∈ B(5) và x ≤100          h) x ⋮ 12 và 24 ≤ x ≤ 80

Bài toán 9: Tìm các số tự nhiên x biết.

a) x ∈ BC(6; 21; 27) và x ≤ 2000    f) x ∈ BC(5; 7; 8) và x ≤ 500

b) x∈ BC(12; 15; 20) và x ≤ 500    g) x ∈ BC(12; 5; 8) và 60 ≤ x ≤ 240

c) x ∈ BC(5; 10; 25) và x < 400     h) x ∈ BC(3; 4; 5; 10) và x <200

d) x ∈ BC(3; 5; 6; 9) và 150 ≤ x ≤ 250

e) x ∈ BC(16; 21; 25) và x ≤ 400   k) x ∈ BC(7; 14; 21) và x ≤ 210

Bài toán 10: Tìm số tự nhiên x, biết.

a) (x - 1) ∈ BC(4; 5; 6) và x < 400

b) (x - 1) ∈ BC(4; 5;6) và x ⋮ 7 và x < 400

c) (x + 1) ∈ BC(6; 20; 15) và x ≤ 300

d) (x + 2) ∈ BC( 8 : 16 : 24) và x ≤ 250

Bài toán 11: Tìm x N biết.

a) x ⋮ 39 ; x ⋮ 65 ; x ⋮ 91 và 400 < x < 2600

b) x ⋮ 12 ; x ⋮ 21 ; x ⋮ 28 và x < 500

Bài toán 12: Tìm số tự nhiên x lớn nhất sao cho: 13 ; 15 ; 61 chia x đều dư 1.

Bài toán 13: Tìm số tự nhiên x lớn nhất sao cho 44; 86; 65 chia x đều dư 2.

Bài toán 14: Tìm số tự nhiên x, biết 167 chia x dư 17; 235 chia x dư 25.

Bài toán 15: Tìm số tự nhiên x biết khi chia 268 cho x thì dư 18; 390 chia x dư 40.

Bài toán 16: Tìm số tự nhiên x lớn nhất thỏa mãn: 27 chia x dư 3; 38 chia x dư 2 và 49 chia x dư 1.

Bài toán 17: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5; 7; 11 thì được các số dư lần lượt là 3; 4; 6.

Bài toán 18: Học sinh của lớp 6A khi xếp thành hàng 2, hàng 3, hàng 4 hoặc hàng 8 đều vừa đủ. Biết số học sinh của lớp 6A từ 38 đến 60 em. Tính số học sinh lớp 6A.

Đ/S: 48 học sinh

Bài toán 19: Số học sinh của lớp 6A từ 40 đến 50 em. Khi xếp thành hàng 3 hoặc 5 đều dư 2 em. Tính số học sinh lớp 6A.

Đ/S: 47 học sinh

Bài toán 20: Học sinh khối 6 của một trường có từ 200 đến 300 em. Nếu xếp thành hàng 4, hàng 5 hoặc hàng 7 đều dư 1 em. Tìm số học sinh khối 6 của trường đó.

Đ/S: 281 học sinh.

Bài toán 21: Có 96 cái bánh và 84 cái kẹo được chia đều vào mỗi đĩa. Hỏi có thể chia được nhiều nhất thành bao nhiêu đĩa. Khi ấy mỗi đĩa có bao nhiêu cái bánh, bao nhiêu cái kẹo?

Đ/S:

Bài toán 22: Một lớp 6 có 24 nữ và 20 nam được chia thành tổ để số nam và số nữ được chia đều vào tổ. Hỏi chia được nhiều nhất bao nhiêu tổ? Khi ấy tính số nam và số nữ mỗi tổ.

Đ/S: 4 tổ. Mỗi tổ có 6 nữ và 5 nam.

Bài toán 23: Có 60 quyển vở và 42 bút bi được chia thành từng phần. Hỏi có thể chia nhiều nhất được bao nhiêu phần để số vở và số bút bi được chia đều vào mỗi phần? Khi ấy mỗi phần có bao nhiêu vở và bao nhiêu bút bi?

Đ/S: 6 phần. Mỗi phần có 10 vở và 7 bút.

Bài toán 24: Một hình chữ nhật có chiều dài 105 và chiều rộng 75m được chia thành các hình vuông có diện tích bằng nhau. Tính độ dài cạnh hình vuông lớn nhất trong các cách chia trên.

Đ/S: 15m

Bài toán 25: Đội A và đội B cùng phải trồng một số cây bằng nhau. Biết mỗi người đội A phải trồng 8 cây, mỗi người đội B phải trồng 9 cây và số cây mỗi đội phải trồng khoảng từ 100 đến 200 cây. Tìm số cây mà mỗi đôi phải trồng.

Đ/S: 144 cây

Bài toán 26: Một mảnh đất hình chữ nhật có chiều dài 112m và chiều rộng 40m. Người ta muốn chia mảnh đất thành những ô vuông bằng nhau để trồng các loại rau. Hỏi với cách chia nào thì cạnh ô vuông là lớn nhất và bằng bao nhiêu?

Đ/S: 8m

Bài toán 27: Có 133 quyển vở, 80 bút bi, 177 tập giấy. Người ta chia vở, bút bi, giấy thành các phần thưởng bằng nhau, mỗi phần thưởng gồm cả ba loại. Nhưng sau khi chia xong còn thừa 13 quyển vở, 8 bút và 2 tập giấy không đủ chia vào các phần thưởng khác. Tính xem có bao nhiêu phần thưởng.

Đ/S: 3 phần thưởng

Bài toán 28: Một đơn vị bộ đội khi xếp thành mỗi hàng 20 người, 25 người hoặc 30 người đều thừa 15 người. Nếu xếp thành hàng 41 người thì vừa đủ (không có hàng nào thiếu, không có ai ở ngoài). Hỏi đơn vị đó có bao nhiêu người, biết rằng số người của đơn vị chưa đến 1000 người.

Đ/S: 615 người.

Bài toán 29: Số học sinh khối 6 của một trường khoảng từ 300 đến 400 học sinh. Mỗi lần xếp hàng 12, hàng 15, hàng 18 đều vừa đủ không thừa ai. Hỏi trường đó khối 6 có bao nhiêu học sinh.

Đ/S: 360 học sinh.

Bài toán 30: Cô giáo chủ nhiệm muốn chia 128 quyển vở, 48 bút chì và 192 tập giấy thành một số phần thưởng như nhau để trao trong dịp sơ kết học kì một. Hỏi có thể chia được nhiều nhất bao nhiêu phần thưởng, khi đó mỗi phần thưởng có bao nhiêu quyển vở, bao nhiêu bút chì, bao nhiêu tập giấy.

Đ/S: 16 phần. 8 quyển vở, 3 bút chì, 12 tập giấy.

Bài toán 31: Tìm các giá trị nguyên của x để. (toán nâng cao chuyên đề này).

a) 1 ⋮ (x + 7)         e) (2x - 9) ⋮ (x - 5)

b) 4 ⋮ (x - 5)         g) (x2 - x - 1) ⋮ (x - 1)

c) (x +8) ⋮ (x + 7)     h) (x2 - 3x - 5) ⋮ (x - 3)

d) (2x + 16) ⋮ (x + 7)  k) (5x + 2) ⋮ (x + 1)

d) (x - 4) ⋮ (x - 5)     l) (2x2 + 3x + 2) ⋮ (x + 1)

Bài toán 32: với x ∈ Z, chứng minh rằng.

a) [x(x + 1) + 1] không chia hết cho 2

b) (x2 + x + 1) không chia hết cho 2

c) [3.(x2 + 2x) + 1] không chia hết cho 3

d) (3x2 + 6x + 1) không chia hết cho 3.

3
24 tháng 12 2020

Rồi viết hết lên luôn đi :))

11 tháng 12 2021

ko có j làm mà cho hẳn cả cái đề