Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)
\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)
Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)
Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)
Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)
Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Nguyễn Hải Đăng giải bài toán này.
\(A=\frac{\frac{1}{2}:\left(\frac{1}{3}\right)^2\cdot\left(\frac{3}{2}\right)^2}{-0,75:\left(\frac{1}{4}\right)^2\cdot\left(\frac{4}{3}\right)^3}\)
\(=\frac{\frac{81}{8}}{-\frac{256}{9}}=-\frac{729}{2048}\)
Bài 2:
\(\left(\frac{-2}{3}\right)^3:\frac{3}{4}+\left(\frac{-2}{3}\right)^4:\left(\frac{3}{2}\right)^2\)
\(=\left(\frac{-2}{3}\right)^3\cdot\frac{4}{3}+\left[\left(\frac{-2}{3}\right)^3\cdot\frac{4}{3}\right]\cdot\frac{-2}{3}\cdot\frac{1}{3}\)
\(=\frac{-32}{81}+\frac{-32}{81}\cdot\frac{-2}{9}\)
\(=\frac{-32}{81}\left(1+\frac{-2}{9}\right)=\frac{-32}{81}\cdot\frac{7}{9}=-\frac{224}{729}\)
Bài 3:
Xét 2 trường hợp:
TH1: \(\text{3-2x=0}\Rightarrow x=\frac{3}{2}\)(thỏa mãn)
TH2: \(x=\frac{1}{2}\)(thỏa mãn)
Bài 4:
Điều kiện: \(y\ge\frac{1}{3}:2=\frac{1}{6}\)
Xét \(\frac{1}{6}\le y\le\frac{1}{2}\) ta có:
\(\frac{1}{2}-y=2y-\frac{1}{3}\Rightarrow3y=\frac{5}{6}\Rightarrow y=\frac{5}{18}\)(chọn)
\(\Rightarrow y^3=\frac{125}{5832}\)
Xét \(y>\frac{1}{2}\)ta có:
\(y-\frac{1}{2}=2y-\frac{1}{3}\Rightarrow y=\frac{-1}{6}\) (loại)
\(\Rightarrow y^3=-\frac{1}{216}\)
B1:
Ta có: a - b = ab => a = ab + b = b(a + 1)
Thay a = b(a + 1) vào a - b = a : b ta có: \(a-b=\frac{b\left(a+1\right)}{b}=a+1\)
=> a - b = a + 1 => a - a - b = 1 => -b = 1 => b = -1
Lại có: ab = a - b
<=> a x (-1) = a - (-1) <=> -a = a + 1 <=> -a - a = 1 <=> -2a = 1 <=> a = -1/2
Vậy...
B2:
a, \(3y\left(y-\frac{2}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3y=0\\y-\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=\frac{2}{5}\end{cases}}}\)
b, \(7\left(y-1\right)+2y\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right)\left(7+2y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\7+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\2y=7\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\y=\frac{7}{2}\end{cases}}\)
B3: \(K=\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)
\(K=\left(-\frac{2}{3}+\frac{1}{6}\right)+\left(\frac{3}{4}-\frac{2}{5}\right)\)
\(K=\left(\frac{-4}{6}+\frac{1}{6}\right)+\left(\frac{15}{20}-\frac{8}{20}\right)\)
\(K=\frac{-1}{2}+\frac{7}{20}=\frac{-10}{20}+\frac{7}{20}=\frac{-3}{20}\)