\(A=x^2-3x\sqrt{y}+2y\) với \(x=\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

\(y=\frac{1}{\sqrt{9+4\sqrt{5}}}=\frac{1}{\sqrt{\left(\sqrt{5}+2\right)^2}}=\frac{1}{\sqrt{5}+2}\)

\(A=x^2-3x\sqrt{y}+2y=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)

\(=\left(\frac{1}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}\right)\left(\frac{1}{\sqrt{5}-2}-\frac{1}{\sqrt{5}+2}\right)\)

\(=\left[\frac{\sqrt{5}+2-2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\right]\left[\frac{\sqrt{5}+2-\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\right]\)

\(=\left[\frac{-\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\right]\left(\frac{4}{5-4}\right)\)

\(=\left(\frac{-1}{\sqrt{5}-2}\right).4=\frac{-4}{\sqrt{5}-2}\)

a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)

\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)

\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)

18 tháng 6 2019

\(a,\)\(A=x^2-3x\sqrt{y}+2y\)

\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)

\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)

\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)

\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)

\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)

\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)

\(=4\left(6-\sqrt{5}\right)\)

\(=24-4\sqrt{5}\)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia