Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+4}=x+2\)
\(x+2=\left(x+2\right)^2\)
\(x+2=x^2+4x+4\)
\(x^2+3x+2=0\)
\(x^2+x+2x+2=0\)
\(x\left(x+1\right)+2\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+2\right)=0\)
- (x+1)=0=>x=-1
- (x+2)=0=>x=-2
Tại năm nay mk cũng lên lớp 9 nên cx k bt đúng hay sai nữa.Nếu đúng thì k cho mk nhé ^_^
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
ĐK : \(x\ge0\)
pt <=> \(2\sqrt{2}+\sqrt{x}\sqrt{x+1}=\sqrt{x+9}\sqrt{x+1}\)
<=> \(8+4\sqrt{2}\sqrt{x\left(x+1\right)}+x\left(x+1\right)=\left(x+1\right)\left(x+9\right)\)
\(\Leftrightarrow4\sqrt{2}\sqrt{x\left(x+1\right)}=9x+1\)
\(\Leftrightarrow32\left(x^2+x\right)=81x^2+18x+1\)
<=> \(49x^2-14x+1=0\)
<=> \(\left(7x-1\right)^2=0\)
<=> x=1/7 (tm)
a,\(x^2-4-\sqrt{x^2-2}=0\)
dat x^2-2=a ta co:
\(a-\sqrt{a}-2=0\)
=>\(\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{5}{2}=0\)
=>\(|\sqrt{a}-\frac{1}{2}|=\sqrt{\frac{5}{2}}\)
tu day xet cac truong hop roi giai
\(a,\sqrt{\frac{x-2}{25}}+2\sqrt{4x-8}=2\sqrt{x-2}+11\)
\(ĐKXĐ:x\ge2\)
\(\frac{1}{5}\sqrt{x-2}+4\sqrt{x-2}-2\sqrt{x-2}=11\)
\(\frac{11}{5}\sqrt{x-2}=11\)
\(\sqrt{x-2}=5\)
\(x-2=25\)
\(x=27\left(TM\right)\)
\(b,\sqrt{x^2-2x+1}=3x-2\)
\(ĐKXĐ:x\ge\frac{3}{2}\)
\(\sqrt{\left(x-1\right)^2}=3x-2\)
\(\left|x-1\right|=3x-2\)
\(x-1=3x-2\)
\(x=\frac{1}{2}\left(KTM\right)\)vậy pt vô nghiệm
b, đk : x >= 2/3
|x - 1| = 3x - 2
=> x - 1 = 3x - 2 hoặc x - 1 = 2 - 3x
=> 2x = 1 hoặc 4x = 3
=> x = 1/2 (ktm) hoặc x = 3/4 (tm)
\(x-9\sqrt{x}+14=0\Leftrightarrow x-2\sqrt{x}-7\sqrt{x}+14=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-7\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=49\end{cases}}}\)
Vậy x = 4 hoặc x = 49
\(\sqrt{x^2-10x+25}=7-2x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)
\(\Leftrightarrow\left|x-5\right|=7-2x\)(1)
Nếu \(x-5\ge0\Rightarrow x\ge5\) thì (1) trở thành: x-5=7-2x <=> 3x=12 <=> x=4 (loại)
Nếu x - 5 < 0 => x < 5 thì (1) trở thành: -(x-5)=7-2x <=> -x+5=7-2x <=> x=2 (nhận)
Vậy x = 2
\(\sqrt{x-2}+\sqrt{2-x}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}+\sqrt{2-x}\right)^2=0\)
\(\Leftrightarrow x-2+2\sqrt{\left(x-2\right)\left(2-x\right)}+2-x=0\)
\(\Leftrightarrow2\sqrt{4x-x^2-4}=0\)
\(\Leftrightarrow\left(\sqrt{4x-x^2-4}\right)^2=0\)
\(\Leftrightarrow4x-x^2-4=0\)
giải phương trình bình thường
\(\sqrt{x^2+x+1}=x+2\)
\(\Leftrightarrow\left(\sqrt{x^2}+x+1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow x^2+x+1=x^2+4x+4\)
\(\Leftrightarrow-3x=3\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
Cảm ơn bạn nha